首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterson A  Karsi A  Feng J  Liu Z 《Gene》2003,305(2):151-160
Ribosomal protein genes have become widely used as markers for phylogenetic studies and comparative genomics, but they have not been available in fish. We have cloned and sequenced a complete set of all 47 60S ribosomal protein cDNAs from channel catfish (Ictalurus punctatus), of which 43 included the complete protein encoding regions. Most ribosomal protein mRNAs in channel catfish are highly similar to their mammalian counterparts. However, L4, L14, and L29 are significantly shorter in channel catfish than in mammals due to deletions in the 3' end of the gene. Two distantly related L5 cDNAs, L5a and L5b, were found in channel catfish. L5a is more similar to L5 in other vertebrates, while L5b showed significant levels of divergence, suggesting independent evolution of the two L5-encoding genes. The 47 ribosomal protein genes are generally highly expressed and together account for 11-14% of overall gene expression, depending on the tissues. Expression levels were highly variable both within a single tissue among different ribosomal protein genes, and among tissues with regard to a single ribosomal protein gene. Strong tissue preference expression was also observed for some ribosomal proteins. This set of ribosomal protein gene sequences represents one of the most complete sets from any single organism and will aid in fish phylogenetic and comparative genomic studies.  相似文献   

2.
Previously, a series of clonal alloantigen-dependent T cell lines established from the channel catfish revealed distinctly different TCR beta rearrangements. Here, a follow-up study of the junctional diversity of these TCR gene rearrangements focuses on characterization of the genomic organization of the TCRB locus. Surprisingly, a total of 29 JB genes and two substantially different CB genes were identified downstream of a single DB gene. This is in contrast to the situation in mammals, where two clusters of a DB gene, six or seven JB genes, and a CB gene are found in tandem. The catfish CB genes are approximately 36% identical at the amino acid level. All 29 catfish JB gene segments appear functional. Thirteen were used in the 19 cDNAs analyzed, of these eight were used by the 11 catfish clonal alloantigen-dependent T cell lines. As might be expected, CDR3 diversity is enhanced by N-nucleotide additions as well as nucleotide deletions at the V-D and D-J junctions. Taken together, compared with that in mammals, genomic sequencing of the catfish TCR DB-JB-CB region reveals a unique locus containing a greater number of JB genes and two distinct CB genes.  相似文献   

3.
4.
5.
6.
7.
Expressed sequence tag (EST) markers are important for gene mapping and for marker-assisted selection (MAS). To develop EST markers for use in catfish gene mapping, 100 randomly picked complementary DNAs from the channel catfish (Ictalurus punctatus) pituitary library were sequenced. The EST sequences were used to design primers to amplify channel catfish and blue catfish (I. furcatus) genomic DNAs. Polymerase chain reaction products of the ESTs were analyzed to determine length polymorphism between the channel catfish and blue catfish. Eleven polymorphic EST markers were identified. Five of the 11 EST markers were from known genes and the other six were from unidentified ESTs. Seven ESTs were found to be associated with microsatellite sequences. Analysis of channel catfish gene sequences indicated highly biased codon usage, with 16 codons being preferably used. These codons were more preferably used in highly expressed ribosomal protein genes and in highly expressed pituitary hormone genes. G/C-rich codons are less used in channel catfish than those in other vertebrates suggesting AT-richness of the channel catfish genome. Received June 29, 1998; accepted March 29, 1999.  相似文献   

8.
We report sequence, tissue expression and map-position data for myogenin, MYOD1, myostatin and follistatin in three Ictalurid catfish species: channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and white catfish (Ameiurus catus). These genes are involved in muscle growth and development in mammals and may play similar roles in catfish. Amino acid sequences were highly conserved among the three Ictalurid species (>95% identity), moderately conserved among catfish and zebrafish (approximately 80% identity), and less conserved among catfish and humans (approximately 40-60% identity) for all four genes. Gene structure (number of exons and introns and exon-intron boundaries) was conserved between catfish and other species for all genes. Myogenin and MYOD1 expression was limited to skeletal muscle in juvenile channel catfish, similar to expression patterns for these genes in other fish and mammalian species. Myostatin was expressed in a variety of tissues in juvenile channel catfish, a pattern common in other fish species but contrasting with data from mammals where myostatin is primarily expressed in skeletal muscle. Follistatin was expressed in juvenile catfish heart, testes and spleen. All four genes contained polymorphic microsatellite repeats in non-coding regions and linkage analysis based on inheritance of these microsatellite loci was used to place the genes on the channel catfish linkage map. Information provided in this study will be useful in further studies to determine the role these genes play in muscle growth and development in catfish.  相似文献   

9.
L-type lectins have a leguminous lectin domain and can bind to high-mannose type oligosaccharides. In the secretory pathway, L-type lectins play crucial roles in selective protein trafficking, sorting and targeting. Three L-type lectins were cloned in the channel catfish, Ictalurus punctatus, the 53 kDa endoplasmic reticulum ER-Golgi intermediate compartment protein (ERGIC-53), the vesicular integral protein of 36 kDa (VIP36) and VIP36-like. Phylogenetic analysis indicated that the catfish genes are orthologous to their counterparts in other species. Southern blot analysis demonstrated that all three L-type lectin genes are likely single-copy genes in the catfish genome. Analysis of expression in healthy tissues using quantitative real time RT-PCR indicated that all three genes are expressed widely in all tested tissues, but with strong tissue preference of expression: ERGIC-53 was found to be abundantly expressed in the liver, VIP36 was found to be abundantly expressed in the head-kidney, whereas VIP36-like was found to be abundantly expressed in the brain. Upon infection with Edwardsiella ictaluri, expressions of the three genes all had significant up-regulation in the head-kidney, but had distinct expression patterns: ERGIC-53 was gradually induced with the highest expression 7 days after challenge in the head-kidney, but was down-regulated in the liver, spleen, and brain. VIP36 was highly induced in the head-kidney, and 3 days after challenge in the brain, but was not up-regulated in any other tissues or timepoints after challenge. Expression levels of the catfish VIP36-like gene appeared to also respond to infection, albeit with differing patterns among the tested tissues. Taken together, our results indicate that all three L-type lectin genes may be involved in the immune responses of catfish after infection with E. ictaluri.  相似文献   

10.
11.
This study describes the use of the polymerase chain reaction for physical mapping of fish genes. A 287–base pair (bp) fragment of the 28S ribosomal RNA gene (28S rDNA) of channel catfish Ictalurus punctatus was isolated and sequenced with human-derived primers. The nucleotide (nt) sequence of this fragment was 20 bp shorter than that of the corresponding region of the human 28S rDNA. The gene was mapped to chromosomes of channel catfish by fluorescence in situ hybridization (FISH) and in situ polymerase chain reaction (ISPCR). A major locus and a minor locus of 28S rDNA were found on chromosomes of channel catfish. The major locus was associated with the active nucleolus organizer region (NOR) sites. The minor locus was highly resolved and not detectable by silver staining, suggesting that this locus was not involved in synthesis of ribosomal RNA and possessed fewer copies of 28S rDNA. Both loci contained GC-rich DNA elements that could be components of 28S rDNA repeated units. In this study, a potential method of comparative mapping of the channel catfish genome has been presented by using human-derived oligonucleotide sequences. These data demonstrate that ISPCR is highly specific and will be useful in physical mapping of fish genomes.  相似文献   

12.
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes.  相似文献   

13.
14.
The 26S proteasome is a multi-subunit ATP-dependent protease responsible for degrading most short-lived intracellular proteins targeted for breakdown by ubiquitin conjugation. The complex is composed of two relatively stable subparticles, the 20S proteasome, a hollow cylindrical structure which contains the proteolytic active sites in its lumen, and the 19S regulatory particle (RP) which binds to either end of the cylinder and provides the ATP-dependence and the specificity for ubiquitinated proteins. Among the approximately 18 subunits of the RP from yeast and animals are a set of six proteins, designated RPT1-6 for regulatory particle triple-A ATPase, that form a distinct family within the AAA superfamily. Presumably, these subunits use ATP hydrolysis to help assemble the 26S holocomplex, recognize and unfold appropriate substrates, and/or translocate the substrates to the 20S complex for degradation. Here, we describe the RPT gene family from Arabidopsis thaliana. From a collection of cDNAs and genomic sequences, a family of genes encoding all six of the RPT subunits was identified with significant amino acid sequence similarity to their yeast and animal counterparts. Five of the six RPT sub- units are encoded by two genes; the exception being RPT3 which is encoded by a single gene. mRNA for each of the six proteins is present in all tissue types examined. Five of the subunits (RPT1 and 3-6) complemented yeast mutants missing their respective orthologs, indicating that the yeast and Arabidopsis proteins are functionally equivalent. Taken together, these results demonstrate that the RP, like the 20S proteasome, is functionally and structurally conserved among eukaryotes and indicate that the plant RPT subunits, like their yeast counterparts, have non-redundant functions.  相似文献   

15.
Similar to the higher vertebrates, the pituitary in bony fishes express three glycoprotein hormones: thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). In addition to the appropriate secretion of these hormones, the timely and quantitative expression of their specific receptors (TSHR, FSHR and LHR) in the target tissues is an essential requirement for their physiological action. In fishes that constitute a very diverse group of vertebrates, there are only a few published reports of primary structure of these receptors although other examples have been communicated briefly. This review will summarize these reports as well as to describe the insights gained from what is known about the mammalian receptors. The structural organization of the fish receptors (as deduced from the encoding cDNAs) is highly homologous to the higher vertebrate receptors in that there is a 7-pass transmembrane region and an N-terminal extracellular domain, which contributes to ligand specificity. In mammals, the FSHR and the TSHR genes are composed of 10 exons whereas the LHR gene is composed of 11 exons. The position of the 'extra intron' is conserved in the catfish LHR gene. In the mammals, the transmembrane domain of each of the three glycoprotein hormone receptors is encoded by a single exon, however, in the salmon genes and homologous invertebrate genes, this portion of the receptor is encoded by multiple exons. In general, the tissue-specific expression of these receptors is similar to that seen in mammals, however, the gonadal expression of TSHR in the striped bass and sunrise sculpin and the renal expression of LHR in the channel catfish are unique.  相似文献   

16.
Myostatin is a recently discovered gene that inhibits muscle growth. In the present study, we characterized the myostatin locus and its expression in channel catfish (Ictalurus punctatus). The genomic DNA and cDNA encoding the channel catfish myostatin were cloned and sequenced. The myostatin gene has three exons encoding a protein of 389 amino acids. Comparison of the genomic sequences with those of the cDNA revealed that the myostatin cDNA was 1673 base pair (bp) long with a 5'-untranslated region (UTR) and 3'-UTR of 180 and 323 bp, respectively. The deduced amino acid sequences of the catfish myostatin is highly conserved with those of other organisms. The myostatin locus is highly polymorphic in channel catfish because of the presence of several microsatellites and single nucleotide polymorphic sites. The myostatin gene was expressed in various tissues and developmental stages at differential levels, suggesting complex regulation of this gene and perhaps roles for myostatin in addition to those originally suggested.  相似文献   

17.
Liu Z  Kim S  Kucuktas H  Karsi A 《Gene》2001,275(2):207-215
In vertebrates, the creatine kinase (CK) family consists of two cytosolic and two mitochondrial isoforms. The two cytosolic isoforms are the muscle type (M-CK) and the brain type (B-CK). Here we report multiple CK isoenzymes in the diploid channel catfish (Ictalurus punctatus) with one unusual cathodic isoform that was previously found only in pathological situations in human. The cathodic CK isoform existed only in the channel catfish stomach, ovary, and spleen, but not in any other species analyzed such as tilapia, smallmouth bass, chicken, or rat. Two genes encode the multiple forms of the channel catfish M-CK cDNAs. M-CK1 has three alleles, M-CK1.1, M-CK1.2, and M-CK1.3, while M-CK2 has just one allele as determined by analysis of 17 cDNA clones and by allele-specific PCR. M-CK1 encodes a protein of 381 amino acids and the M-CK2 cDNA encodes a protein of 380 amino acids. The two cDNAs shared an 86% identity and both have the nine diagnostic boxes for cytosolic CKs and thus are of cytosolic origin. The M-CK1 gene was isolated, sequenced, and characterized and its promoter should be useful for transgenic research for muscle-specific expression.  相似文献   

18.
19.
20.
Transferrin is important in iron metabolism and has been reported to be involved in disease defence responses after bacterial infection. In this study, we identified, sequenced, and characterized the transferrin gene from channel catfish, Ictalurus punctatus. The catfish transferrin gene was similar to those of other vertebrate species with 17 exons and 16 introns. Sequence analysis indicated the presence of the two duplicated lobes, each containing two sub-domains separated by a cleft harboring the iron-binding site, suggesting their structural conservation. The channel catfish transferrin cDNA encodes 679 amino acids with 42–56% similarity to known transferrin genes from various species. Southern blot analysis suggested the presence of two copies of the transferrin gene in the catfish genome, perhaps arranged in a tandem fashion. The catfish transferrin gene was mapped to a catfish BAC-based physical map. The catfish transferrin gene was highly expressed in the liver, but expression was low in most other tested tissues. Transferrin expression was significantly up-regulated after infection with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish. Such induction was also found with co-injection of iron-dextran and E. ictaluri, while transferrin expression was not significantly induced with the injection of iron-dextran alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号