首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and characterization of murine IRAK-2   总被引:2,自引:0,他引:2  
Interleukin-1 receptor-associated kinases (IRAKs) are pivotal signaling elements of the Toll/IL-1 receptor (TIL) family, which play a role in innate immune responses by coordinating host defence mechanisms. Presently four different forms of human IRAK molecules are cloned (hu-IRAK-1, hu-IRAK-2, hu-IRAK-M, and hu-IRAK-4). In the murine system, only three genes have been identified so far, mouse Pelle-Like Kinase (mPLK), which corresponds to human IRAK-1, mu-IRAK-M, and mu-IRAK-4. Here we report the molecular cloning and characterization of murine IRAK-2 (mu-IRAK-2), a mouse homolog to human IRAK-2 (hu-IRAK-2). Murine and human IRAK-2 molecules show 67% sequence identity, they are ubiquitiously expressed, and both practically lack autophoshorylation kinase activity. The murine molecule reveals two remarkable differences to its human counterpart: it shows a C-terminal extension and it has no stimulatory effect on IL-1 induced NF-kappa B activation when compared to hu-IRAK-2, suggesting subtle functional differences in signaling by IRAK-2 in human and mouse cells.  相似文献   

2.
Toll样受体信号转导途径研究进展   总被引:14,自引:0,他引:14  
Toll样受体(Toll-like receptors,TLRs)属于模式识别受体(pattern recognition receptors,PRRs)家族,识别高度保守的微生物组分-病原相关分子模式(pathogen-associated molecular pat-terns,PAMPS)。迄今为止,在人类基因组中已发现10个Toll样受体。这些受体通过感知不同的微生物刺激,招募特异接头蛋白,激活一系列信号级联反应,引发针对病原体的特异性免疫应答,是连接天然免疫和适应性免疫应答的桥梁。哺乳动物Toll样受体的发现引领天然免疫的研究进入飞速发展的时代。本文将对Toll样受体信号转导途径的最新进展作一综述,以便更好地理解Toll样受体介导的分子免疫机制,这将有助于研发免疫治疗的分子靶标,最终有效预防、控制Toll样受体介导的疾病。  相似文献   

3.
Toll样受体4(Toll like receptor 4,TLR4)是广泛表达于哺乳动物的跨膜受体,由于TLR4在人体的高表达与各种炎症反应相关联,抑制过高的TLR4表达可能是控制机体炎症损伤的新途径.目前的研究主要是针对TLR4的直接阻断与对TLR4的信号转导通路的抑制.由于TLR4的信号转导通路已经较为明确,从而研究对TLR4信号转导通路的抑制可能会对机体过强的炎症反应及损伤的控制产生有益作用.本文就当前针对抑制TLR4信号转导通路的研究作一综述.  相似文献   

4.
利用反向遗传学的方法对水稻OsCIPK10基因的功能进行了分析。结果表明,过量表达OsCIPK10基因的转基因水稻与野生型水稻在株型、抗高盐和耐低钾能力方面没有明显差异,但是小RNA干扰表达OsCIPK10基因的转基因水稻表现出显著的抗盐性。在缺钾胁迫条件下OsCIPK10基因的表达升高,推测该基因在应答高盐和低钾的非生物胁迫过程中起作用。OsCIPK10基因启动子与报告基因GUS融合表达的转基因水稻的染色结果显示:OsCIPK10基因呈组成型表达,但是在维管组织表达水平更高。  相似文献   

5.
6.
Interleukin-1 receptor antagonist (IL-1ra) is an inhibitor of the proinflammatory IL-1. The IL-1ra gene (Il1rn) maps near the allergen-induced bronchial hyper-responsiveness-1 locus, Abhr1, which we previously mapped to murine chromosome 2 using A/J (asthma susceptible) and C3H/HeJ (asthma resistant) mice. We evaluated the role of Il1rn in our mouse model by comparing its genomic sequence between A/J and C3H/HeJ mice as well as assessing strain-specific RNA and protein production in response to allergen. We identified no functional sequence variations in the Il1rn gene between A/J and C3H/HeJ mice. Il1rn mRNA and protein were induced by ovalbumin (OVA) exposure in both strains, but to a greater extent in A/J mice at the earlier time points. We examined other IL-1 family members (Il1a, Il1b, Il1f9, and Il1r2) and found OVA-induced expression increases at 6 h, yet only Il1b and Il1f9 had strain-specific differences. Of these, only Il1f9 is located within Abhr1, and we found several non-coding polymorphisms in the Il1f9 gene between A/J and C3H/HeJ mice. Our results exclude Il1rn as the gene for Abhr1 and indicate that Il1f9 warrants further investigation based on genetic and expression differences observed in our mouse model of allergic asthma.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
The activation of interleukin receptor associated kinases (IRAK) is an important event in several inflammatory processes. However, exposing monocytes to a nitric oxide (NO) donor inhibits the activity of IRAK-1 and its molecular interaction with TNF receptor associated factor-6 (TRAF6). Despite the fact that NO is known to regulate many events in the immune and vascular system, the mechanism that underlies this inhibition remains unknown. We have recently demonstrated that IRAK-M inhibits the TLR/IRAK pathway during endotoxin tolerance and thus, we hypothesized that IRAK-M may be involved in the inhibition of IRAK-1 activity in the presence of NO. Hence, we have analyzed the expression of IRAK-M in human monocytes following exposure to a NO donor (GSNO) and we have observed that GSNO was capable of inducing IRAK-M mRNA and protein expression 8 and 20 h after stimulation, respectively. It is known that NO induces the expression of TNF-alpha in monocytes and we found that exposure to TNF-alpha induced IRAK-M mRNA expression in human monocytes within 2 h of stimulation. Furthermore, the expression of IRAK-M induced by GSNO was inhibited by the presence of a blocking antibody raised against TNF-alpha. Thus, our data indicate that stimulation of human monocytes with a NO donor results in a clear induction of IRAK-M and this is dependent on the release of TNF-alpha by this kind of cells.  相似文献   

8.
目的:通过研究尿酸性肾病动物模型中白介素-1(IL-1)beta和白介素-1受体相关激酶4(IRAK-4) 表达的意义,了解IL-1beta信号 通路在尿酸性肾病中的作用。方法:Wistar 大鼠54 只随机分为高尿酸血症组30 只、正常组24 只,制备尿酸性肾病大鼠模型,检测 尿酸(UA)、尿素氮(BUN)、肌酐(CR)及肌酐清除率(Ccr)、24 h尿微量白蛋白(mA1b);取肾脏组织行HE 染色,观察形态学变化;免疫 组化测定IL-1beta的表达;荧光定量PCR 检测IRAK-4 mRNA的水平。结果:高尿酸组2、4、6 周时IL-1beta的表达均增加,免疫组化评 分(IHS)均明显升高(P<0.01);高尿酸血症组较正常组IRAK-4 mRNA 在2、4、6 周时均出现表达上调,4~6 周IRAK-4 mRNA表达 明显增加,与正常组比较有显著性差异(P<0.01)。结论:IL-1beta、IRAK-4 参与了尿酸性肾病炎症反应的过程,可能为尿酸性肾病治疗 提供新的可能。  相似文献   

9.
Improper signaling of the IL-36 receptor (IL-36R), a member of the IL-1 receptor family, has been associated with various inflammation-associated diseases. However, the requirements for IL-36R signal transduction remain poorly characterized. This work seeks to define the requirements for IL-36R signaling and intracellular trafficking. In the absence of cognate agonists, IL-36R was endocytosed and recycled to the plasma membrane. In the presence of IL-36, IL-36R increased accumulation in LAMP1+ lysosomes. Endocytosis predominantly used a clathrin-mediated pathway, and the accumulation of the IL-36R in lysosomes did not result in increased receptor turnover. The ubiquitin-binding Tollip protein contributed to IL-36R signaling and increased the accumulation of both subunits of the IL-36R.  相似文献   

10.
The transient receptor potential (TRP) channels form a superfamily with six transmembrane structures, which is common in other types of voltage-dependent channels. The TRP-melastatin (TRPM) subfamily includes the putative tumor-suppressor melastatin, which was originally found as a down-regulated protein in melanoma tumor cell lines. Here, we report a novel TRP-related protein that is a murine orthologue of human TRPM4. The function of the novel murine TRPM4 was studied in HEK-293 cells using a fluorescent calcium indicator, fura-2. The removal and re-introduction of extracellular calcium triggered changes in the intracellular calcium only in cells expressing TRPM4a, which suggests that this novel channel plays a role in the calcium entry process. We also isolated a splice variant of TRPM4 that was proven to be non-functional. Both TRPM4 variants integrated into the plasma membrane. Furthermore, FRET analysis revealed that TRPM4a and TRPM4b localized close together, suggesting a multimerization of the two molecules.  相似文献   

11.
心肌营养素-1及其信号转导   总被引:1,自引:0,他引:1  
心肌营养素 1(Cardiotrophin 1,CT 1)是细胞因子IL 6家族成员,它能够诱导心肌细胞肥大,刺激心脏和神经细胞的存活,具有广泛的生物学作用.其生物活性通过多种信号转导途径实现.  相似文献   

12.
13.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

14.
Inflammatory responses are controlled through members of the interleukin-1 receptor (IL-1R)/Toll-like receptor superfamily. Our earlier work demonstrates that the IL-1 receptor type 1 (IL-1RI) co-receptor, Toll-like and IL-1 receptor regulator (TILRR), amplifies IL-1 activation of NF-κB and inflammatory genes. Here we show that TILRR similarly promotes IL-1-induced anti-apoptotic signals and reduces caspase-3 activity. Further, the TILRR-induced effects on cell survival and inflammatory responses are controlled through distinct parts of the IL-1RI regulatory Toll IL-1 receptor (TIR) domain. Alanine-scanning mutagenesis identified a functional TILRR mutant (R425A), which blocked increases in cell survival and upstream activation of Akt but had no effect on amplification of MyD88-dependent inflammatory responses. A second mutant (D448A) blocked TILRR potentiation of MyD88-dependent signals and inflammatory activation but had no impact on cell survival. Secondary structure predictions suggested that the mutations induce distinct alterations in the α-helical structure of the TILRR core protein. The results indicate a role for TILRR in selective amplification of NF-κB responses through IL-1RI and suggest that the specificity is determined by changes in receptor conformation and adapter protein recruitment.  相似文献   

15.
16.
Multifunctionality of tissue inhibitor of metalloproteinases-1 (TIMP-1) comprising antiproteolytic as well as cytokinic activity has been attributed to its N-terminal and C-terminal domains, respectively. The molecular basis of the emerging proinflammatory cytokinic activity of TIMP-1 is still not completely understood. The cytokine receptor invariant chain (CD74) is involved in many inflammation-associated diseases and is highly expressed by immune cells. CD74 triggers zeta chain–associated protein kinase-70 (ZAP-70) signaling–associated activation upon interaction with its only known ligand, the macrophage migration inhibitory factor. Here, we demonstrate TIMP-1–CD74 interaction by coimmunoprecipitation and confocal microscopy in cells engineered to overexpress CD74. In silico docking in HADDOCK predicted regions of the N-terminal domain of TIMP-1 (N-TIMP-1) to interact with CD74. This was experimentally confirmed by confocal microscopy demonstrating that recombinant N-TIMP-1 lacking the entire C-terminal domain was sufficient to bind CD74. Interaction of TIMP-1 with endogenously expressed CD74 was demonstrated in the Namalwa B lymphoma cell line by dot blot binding assays as well as confocal microscopy. Functionally, we demonstrated that TIMP-1–CD74 interaction triggered intracellular ZAP-70 activation. N-TIMP-1 was sufficient to induce ZAP-70 activation and interference with the cytokine-binding site of CD74 using a synthetic peptide–abrogated TIMP-1-mediated ZAP-70 activation. Altogether, we here identified CD74 as a receptor and mediator of cytokinic TIMP-1 activity and revealed TIMP-1 as moonlighting protein harboring both cytokinic and antiproteolytic activity within its N-terminal domain. Recognition of this functional TIMP-1–CD74 interaction may shed new light on clinical attempts to therapeutically target ligand-induced CD74 activity in cancer and other inflammatory diseases.  相似文献   

17.
18.
Ethylene signaling in plants is mediated by a family of ethylene receptors related to bacterial two-component regulators. Expression in yeast of ethylene-binding domains from the five receptor isoforms from Arabidopsis thaliana and five-receptor isoforms from tomato confirmed that all members of the family are capable of high-affinity ethylene-binding activity. All receptor isoforms displayed a similar level of ethylene binding on a per unit protein basis, while members of both subfamily I and subfamily II from Arabidopsis showed similar slow-release kinetics for ethylene. Quantification of receptor-isoform mRNA levels in receptor-deficient Arabidopsis lines indicated a direct correlation between total message level and total ethylene-binding activity in planta. Increased expression of remaining receptor isoforms in receptor-deficient lines tended to compensate for missing receptors at the level of mRNA expression and ethylene-binding activity, but not at the level of receptor signaling, consistent with specialized roles for family members in receptor signal output.  相似文献   

19.
Rho-kinase and myosin phosphatase are implicated in the phosphorylation-state of myosin light chain downstream of Rho, which is thought to induce smooth muscle contraction and stress fibre formation in non-muscle cells. Here, we found that microtubule-associated proteins, Tau and MAP2, interacted with the myosin-binding subunit (MBS) of myosin phosphatase, and were the possible substrates of both Rho-kinase and myosin phosphatase. We determined the phosphorylation sites of Tau (Thr245, Thr377, Ser409) and MAP2 (Ser1796) by Rho-kinase. We also found that Rho-kinase phosphorylated Tau at Ser262 to some extent. Phosphorylation by Rho-kinase decreased the activity of Tau to promote microtubule assembly in vitro. Substitutions of Ala for Ser/Thr at the phosphorylation sites of Tau (Tau-AAA) did not affect the activity to promote microtubule assembly, while substitutions of Asp for Ser/Thr (Tau-DDD), which are expected to mimic the phosphorylation-state of Tau, slightly reduced the activity. When Tau, or mutated forms of Tau, were expressed in PC12 cells, followed by treatment with cytochalasin D, they promoted extension of the cell process in a cytochalasin-dependent manner. However, Tau-DDD showed the weaker activity in this capacity than wild-type Tau or Tau-AAA. These results suggest that the phosphorylation-state of these residues of Tau affects its activity both in vitro and in vivo. Thus, it is likely that the Rho-kinase/MBS pathway regulates not only the actin-myosin system but also microtubule dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号