首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The use of microorganisms in biotechnology is an important economic area of interest in Brazil, especially the use of Saccharomyces cerevisiae in the baking and alcohol fermentation industries. Dimorphism in S. cerevisiae (cell morphology alterations from budding cells to filamentous structures) has been observed in conditions of nitrogen and carbon deprivation and in the presence of fusel alcohols. This can be described as a defense mechanism that allows the yeast to forage for nutrients through cell elongation, hyphal formation and invasive growth. In this work fifteen industrial strains of S. cerevisiae (including haploid and diploid strains) isolated from the fermentative process for alcohol production were characterized for filamentation on solid culture media under growth conditions of carbon- and nitrogen-deprivation and in the presence of fusel alcohols. The majority of strains showed filamentation induced by isoamyl alcohol, butanol, isopropanol and isobutanol, but not by methanol. In rich medium (YEPD), both haploid and diploid strains showed invasive growth, although this kind of filamentous growth was more common in haploid strains. Similar results were observed when fructose or mannose was used as the sole carbon source. In nitrogen-deficient medium (SLAD) the strains did not filament. The results obtained indicate that the filamentation induced by higher alcohols and carbon deprivation (specially carbon) is a common process in industrial strains of S. cerevisiae contributing towards their maintenance/survival in adverse conditions.  相似文献   

2.
3.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

4.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

5.
Corynebacterium glutamicum strains are used for the fermentative production of l-glutamate. Five C. glutamicum deletion mutants were isolated by two rounds of selection for homologous recombination and identified by Southern blot analysis. The growth, glucose consumption and glutamate production of the mutants were analyzed and compared with the wild-type ATCC 13032 strain. Double disruption of dtsR1 (encoding a subunit of acetyl-CoA carboxylase complex) and pyc (encoding pyruvate carboxylase) caused efficient overproduction of l-glutamate in C. glutamicum; production was much higher than that of the wild-type strain and ΔdtsR1 strain under glutamate-inducing conditions. In the absence of any inducing conditions, the amount of glutamate produced by the double-deletion strain ΔdtsR1Δpyc was more than that of the mutant ΔdtsR1. The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be higher in the ΔdtsR1Δpyc strain than in the ΔdtsR1 strain and the wild-type strain. Therefore, PEPC appears to be an important anaplerotic enzyme for glutamate synthesis in ΔdtsR1 derivatives. Moreover, this conclusion was confirmed by overexpression of ppc and pyc in the two double-deletion strains (ΔdtsR1Δppc and ΔdtsR1Δpyc), respectively. Based on the data generated in this investigation, we suggest a new method that will improve glutamate production strains and provide a better understanding of the interaction(s) between the anaplerotic pathway and fatty acid synthesis.  相似文献   

6.
A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2–186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene–gene interactions can be easily and efficiently determined. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

8.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

9.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

10.
Symptoms of fairy rings caused by Lepista sordida have been reported on Zoysiagrass (Zoysia spp.) turf maintained at fairway height (2 cm), but not on bentgrass (Agrostis spp.) maintained at putting green height (0.5 cm). The mycelia of this fungus inhabit primarily the upper 0–2 cm layer of the soil extending into the thatch. To compare conditions for the mycelial growth in Z. matrella turf to those in A. palustris turf, we examined the effects of nutrients, temperature, water potential, and pH in the field as well as in the laboratory. Greater growth of the mycelia was observed in medium that included hot water extracts from soil of the 0–1 cm zone in Z. matrella turf compared to that from A. palustris. The upper soil layer in Z. matrella turf contained more organic matter from clippings than that in A. palustris. The temperature and water potential of the 0–2 cm soil zone in Z. matrella turf were also more favorable for the mycelial growth. The soil pH values of this zone in Z. matrella turf were less favorable compared to A. palustris but within the range for accelerating mycelial growth. Part of this study was presented orally at the 46th meeting of the Mycological Society of Japan in 2002  相似文献   

11.
In the present study, we modified xylose uptake properties of a recombinant xylose-utilizing yeast Saccharomyces cerevisiae by expression of heterologous and homologous permease-encoding genes. In a mutant yeast strain with the main seven hexose transporter genes deleted, and engineered for xylose utilization, we screened an expression cDNA library of the filamentous fungus Trichoderma reesei (Hypocrea jecorina) for enhanced growth on xylose plates. One cDNA clone with significant homology to fungal sugar transporters was obtained, but when the clone was retransformed into the host, it did not support significant growth on xylose. However, during a long liquid culture of the strain carrying the cDNA clone, adaptive mutations apparently occurred in the host, which led to growth on xylose but not on glucose. The new transporter homologue, Trxlt1 thus appears to code for a protein specific for xylose uptake. In addition, xylose-transporting properties of some homologous hexose transporters were studied. All of them, i.e., Hxt1, Hxt2, Hxt4, and Hxt7 were capable of xylose uptake. Their affinities for xylose varied, K m values between 130 and 900 mM were observed. The single-Hxt strains showed a biphasic growth mode on xylose, alike the Trxlt1 harboring strain. The initial, slow growth was followed by a long lag and finally by exponential growth.  相似文献   

12.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

13.
In this study, we performed an analysis of the ability of four Saccharomyces cerevisiae and one S. bayanus var. uvarum strains, isolated from different industrial processes, to ferment increasing amounts of fructose (from 0 to 70%, w/v). Overall yeast growth was estimated by integration of the area under optical density vs. time curves. Subsequently, this parameter was modeled by means of a substrate inhibition model. All strains showed a similar behavior against fructose concentration in spite of their different origins, but with slight differences. The optimum fructose concentrations to stimulate yeast growth were obtained between 4.33 and 6.05%, while the maximum concentrations above which growth was completely inhibited were attained between 59.56 and 63.85%. Statistically, model parameters calculated for wine yeast strains were significantly different than those obtained for yeasts from Agave and table olive fermentations, except for the maximum inhibitory concentration. The methodology used in this work could be useful for the industry in general as a first procedure to select yeast strains with higher fructose preferences or tolerances, and especially for winemakers, where the risk of spoilage increases by the presence of a marked residual fructose concentration in the finished wine.  相似文献   

14.
15.
16.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

17.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

18.
Four mixed culture fermentations of grape must were carried out with Kluyveromyces thermotolerans strain TH941 and Saccharomyces cerevisiae strain SCM952. In the first culture, both yeasts were added together, whereas in the remaining three cultures S. cerevisiae was added 1, 2, and 3 days after the inoculation of K. thermotolerans. The growth and survival of the K. thermotolerans strain and the amount of the produced l-lactic acid depend on the time of inoculation of the S. cerevisiae strain and provided an effective acidification during alcoholic fermentation. The four cultures contained, respectively, at the end of fermentation 0.18, 1.80, 4.28, and 5.13 g l-lactic acid l−1. The grape must with an initial pH of 3.50 was effectively acidified (70% increase in titratable acidity, 0.30 pH unit decrease) by the production of 5.13 g l-lactic acid l−1.  相似文献   

19.
In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号