首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Gerendás  J.  Sattelmacher  B. 《Plant and Soil》1997,196(2):217-222
The effect of Ni supply on growth and N metabolism of zucchini plants grown with either NH4NO3 or urea as sole N source was investigated. Dry matter production of plants grown with NH4NO3 was not affected by the Ni status, while urea-based nutrition led to reduced growth, particularly when plants were grown without Ni supplementation. The activity of urease, which requires Ni for activation, was hardly detectable in leaves and roots of plants grown without supplementary Ni irrespective of N source. Low-Ni urea-grown plants were chlorotic, accumulated large amounts of urea and had lower amino acid contents indicating impaired usage of the N supplied. The lack of urease activation made these plants metabolically N deficient. The amino acid pools of plants grown with NH4NO3 was not markedly affected by the Ni supply, although these plants accumulated endogenous urea in their leaves when grown without supplementary Ni. In urea-grown plants the glutamine content was considerably increased by Ni supply, indicating that the efficient use of urea N is Ni (urease) dependant. Based on growth and urease activity, a critical Ni concentration in the leaves of around 100 µg kg-1 can be deduced. These results confirm the necessity of Ni for urease activation and thus for growth of plants on urea-based media, as well as for recycling endogenous urea.  相似文献   

2.
Nickel is considered to be an essential micronutrient in plants because of its role in the metalloenzyme urease. In order to characterize the metabolic consequences of Ni deprivation, the significance of Ni supply for growth and N metabolism of rice plants grown with either NH4NO3 or urea as sole N source was evaluated. Growth of plants receiving NH4NO3 was not affected by the Ni status, and neither were the activities of arginase and glutamine synthetase. However, urease activity was not detectable in leaves of low-Ni plants, which in conjunction with arginase action, led to the accumulation of urea in plants grown with NH4NO3. Amino acid contents and mineral nutrient status (except Ni) were not affected by the Ni treatment.Urea-grown Ni-deprived plants showed reduced growth and accumulated large amounts of urea owing to the lack of urease activity. These plants were further characterized by low amino acid contents indicating impaired usage of the N supplied. They also exhibited reduced levels of the urea precursor arginine, which is merely attributed to the overall N economy in these plant. When urea-grown plants were supplied with 0.5 mmol m-3 Ni in the nutrient solution, the dry weight and the amino acid N contents were increased at the expense of the urea contents, indicating efficient use of urea N in Ni-supplemented plants.A critical Ni concentration in the shoot regarding dry matter production of NH4NO3-grown plants could not be deduced, while 25 g Ni kg-1 DW is certainly inadequate for urea-grown plants. This suggests that the Ni requirement strongly depends on the N source employed.Keywords: Amino acids, ornithine cycle, Ni supply, rice, urea, urease activity.   相似文献   

3.
The significance of nickel (Ni), which is essential for ureaseactivity, for growth and nitrogen (N) metabolism ofBrassicanapusgrown in nutrient solution with either NH4NO3or urea assole N source was investigated. Although Ni contents were below25 µg kg-1d. wt, growth of plants relying on NH4NO3wasnot affected by the Ni status. However, supplementing the growthmedium with 0.04 µMNi enhanced dry matter production ofurea-grown plants significantly. Urease activity was significantlyreduced in leaves and roots of plants grown without supplementaryNi irrespective of N source. Plants grown with urea withoutadditional Ni accumulated large amounts of urea and had loweramino acid contents indicating impaired usage of the N supplied,while those grown with NH4NO3under Ni-deprived conditions accumulatedendogenous urea in their older leaves. It is suggested thatNi may not be strictly essential for plants receiving mineralN, or that the critical level is well below 25 µg kg-1d.wt. These results confirm that Ni is required for urease activityand thus for growth of plants on urea-based media, as well asfor recycling endogenous urea.Copyright 1999 Annals of BotanyCompany. Brassica napusvar.annua, amino acids, N nutrition, nickel, spring rape, urea, urease activity.  相似文献   

4.

Background and aims

Urea is the major nitrogen (N) form supplied as fertilizer in agriculture. However, urease, a nickel-dependent enzyme, allows plants to use external or internally generated urea as a nitrogen source. Since a urease inhibitor is frequently applied in conjunction with urea fertilizer, the N-metabolism of plants may be affected. The aim of this study was to determine physiological and molecular effects of nickel deficiency and a urease inhibitor on urea uptake and assimilation in oilseed rape.

Methods

Plants were grown on hydroponic solution with urea as the sole N source under three treatments: plants treated with nickel (+Ni) as a control, without nickel (?Ni) and with nickel and phenylphosphorodiamidate (+Ni+PPD). Urea transport and assimilation were investigated.

Results

The results show that Ni-deficiency or PPD supply led to reduced growth and reduced 15N-uptake from urea. This effect was more pronounced in PPD-treated plants, which accumulated high amounts of urea and ammonium. Thus, Ni-deficiency or addition of PPD, limit the availability of N and decreased shoot and root amino acid content. The up-regulation of BnDUR3 in roots indicated that this gene is a component of the stress response to nitrogen-deficiency. A general decline of glutamine synthetase (GS) activity and activation of glutamate dehydrogenase (GDH) and increases in its expression level were observed in control plants. At the same time, in (?N) or (+Ni+PPD) treated plants, no increases in GS or GDH activities and expression level were found.

Conclusions

Overall results showed that plants require Ni as a nutrient (while most widely used nutrient solutions are devoid of Ni), whether they are grown with or without a urea supply, and that urease inhibitors may have deleterious effects at least in hydroponic grown oilseed rape.  相似文献   

5.

Background and aims

Nickel (Ni) has a critical role in the urea metabolism of plants. This study investigated the impact of seed Ni content along with external Ni supply on the growth, various nitrogen (N) metabolites and N use efficiency (NUE) of soybean plants.

Methods

Soybean plants raised from Ni-poor or Ni-rich seeds were grown in nutrient solution with or without external Ni supply and fed with either urea or nitrate as the sole N source. The changes in growth, leaf chlorophyll levels, Ni and N concentrations of different plant parts, tissue accumulation of various N metabolites and N uptake of soybean as well as NUE and its components were examined.

Results

Nickel starvation reduced the shoot biomass of urea-fed plants by 25 % and the leaf chlorophyll levels by up to 35 %, but nitrate-fed plants were unaffected. Visual toxicity symptoms were not observed in urea-fed plants. Under urea supply, Ni-deficient plants had lower levels of total N, protein and free amino acids in various organs. Root uptake of urea was severely depressed in Ni-deprived plants. Availability of Ni did not have any effect on the NUE of nitrate-fed plants, whereas its deficiency reduced the NUE of urea-fed plants by 30 %. The growth and N nutritional status of urea-fed soybean were significantly improved by high seed Ni reserves as well as external Ni supply.

Conclusion

Adequate Ni supply is required for maximizing the growth, root uptake of urea and NUE of urea-fed plants. Seed Ni reserves contribute significantly to the Ni and thus N nutritional status of soybean.  相似文献   

6.

Background and aims

The importance of seed Ni reserves for plant growth and N metabolism is poorly understood. This study investigated the effects of both seed Ni and externally supplied Ni on the impact of foliarly-applied urea and N-nutritional status of soybean.

Methods

Soybean seeds were produced by growing plants in nutrient solutions containing different Ni levels, and their urease activities were measured. Plants were then grown from these seeds with or without external Ni. After treating half of the plants with foliar urea, the urea damage symptoms, elongation rates and chlorophyll concentrations were followed over one week. Biomass and mineral concentrations of different plant parts were determined.

Results

Nickel supply at increasing rates improved seed yield by up to 25 %. Seeds with Ni concentrations varying between 0.04–8.32 mg.kg?1 were obtained. Depending on the Ni concentration, the seed urease activities differed up to 100-fold. Leaf damage due to foliar urea spray was significantly alleviated by higher seed Ni as well as external Ni supply. Higher Ni also promoted shoot elongation and improved chlorophyll concentrations. Nickel was 10-times more concentrated in the youngest part than in older leaves. In the absence of foliar urea, Ni enhanced the N concentration of the growing part of the shoot by up to 30 %.

Conclusion

A better utilization of foliarly-applied urea-N is achieved in soybean when adequate Ni is supplied to plants by seed reserves and/or externally. High seed Ni levels are also required for preventing foliar urea damage and improving N remobilization.  相似文献   

7.
Cowpeas grown in nutrient solutions, from which Ni had been removed by a ligand exchange technique, accumulated urea in most tissues. Urea levels were highest (up to 3.1 percent dry weight) in necrotic leaf tips. Urea accumulation in Ni-deficient cowpea tissues amounted to about 1 percent of the total N. The accumulation of urea was presumably associated with the catabolism of N compounds in older tissues and the redistribution of N catabolites within the plant during the reproductive growth. The exclusion of N salts from the nutrient media at a late stage of growth, either with or without added Ni, led to a general amelioration of urea accumulation and a lower level of the related amino acid, arginine, in root and stem tissue. Plant leaves that contained toxic levels of urea and displayed necrotic symptoms had tissue Ni levels ranging from less than 0.01 to 0.15 μg Ni per gram dry weight. Nickel concentrations in tissue from plants not treated with Ni, were initially very low, but increased as the cowpeas matured. Apparently, there was a source of Ni contamination in the Ni-deficient growth media which provided a source of Ni for uptake by the plants during growth. Ureide levels were low and unaffected by Ni deprivation. No evidence for free purines or uric acid accumulation in plant tissues could be found. It is hypothesized that Ni (and urease) participates in the normal N metabolism of these plants during the reproductive phase of growth.  相似文献   

8.
Nickel (Ni) is an irreplaceable component of urease which reduces urea toxicity, but excess of Ni has detrimental effects on plant growth. The responses of cucumber (Cucumis sativus L. cvs. Negin and Dominus) plants supplied with urea as sole N source to four Ni concentrations (0, 50, 100 and 200 μM) were investigated. Nickel at a 50 μM concentration stimulated growth and reduced urea accumulation and lipid peroxidation in the leaves. However, the application of 100 and 200 μM Ni reduced a shoot dry mass and increased a malondialdehyde (MDA) content. An activity of catalase (CAT) was not affected by 50 μM Ni, whereas it was significantly increased by 200 μM Ni. The application of Ni resulted in an enhancement of a guaiacol peroxidase (GPX) activity in the leaves. An ascorbate peroxidase (APX) activity was reduced by 200 μM Ni in cv. Negin and by 100 μM Ni in cv. Dominus.  相似文献   

9.
Nickel as a micronutrient element for plants   总被引:4,自引:0,他引:4  
The detrimental effects of excessive Ni on plant growth have been well known for many years. More recent evidence indicates that Ni is required in small amounts for normal plant growth and development. Ni is an essential component of urease in plants and microorganisms. A deficiency of Ni in plants is reported to result in necrotic lesions in leaves in response to toxic accumulations of urea. Urease plays an essential role in mobilization of nitrogenous compounds in plants, a process that is especially important during seed germination and fruit formation when protein reserves are degraded into amino acids. Arginine, an abundant amino acid in plants, when degraded produces urea as a product and urease is needed for urea utilization. Theories of urea formation during allantoin degradation in Glycine max have been recently refuted. In G. max ureides apparently are metabolized via an amidohydrolase reaction with subsequent degradation of ureidoglycine, yielding glyoxylate, NH+4 and CO2. No evidence is available for the formation of urea in this pathway. Nitrogen-fixing symbionts, such as Rhizobium and Bradyrhizobium, contain two known Ni enzymes: urease and hydrogenase. Optimum growth of nodulated legumes and actinorhizal plants may depend on an adequate supply of Ni to meet the requirements of the Ni-requiring enzymes in host plants and endophytes. The seeds of severely Ni-deficient Hordeum are completely inviable, thus providing conclusive evidence for the essentiality of Ni for this species. The evidence indicates that Ni must be added to the list of micronutrient elements generally required by plants.  相似文献   

10.
Gerendás  J.  Polacco  J.C.  Freyermuth  S.K.  Sattelmacher  B. 《Plant and Soil》1998,203(1):127-135
In order to evaluate whether Co can functionally replace Ni in urease, as suggested by Watanabe et al. (Soil Sci. Plant Nutr. (1994) 40, 545–548), zucchini and soybean plants were grown in purified nutrient solutions containing nitrate and ammonium as sole N source supplemented either with 0.05 mmol m-3 Ni or Co or with no supplementation (control). In addition, isolated soybean cotyledons were incubated axenically with either 1 mmol m-3 Ni or Co supplements. Plant growth was not affected by the Ni and Co additions, but urease activity was only detected in Ni-supplemented tissue, and in no case did Co raise the urease activity level. Only Ni-deprived plants (–Ni – Co and –Ni + Co) accumulated appreciable amounts of urea in the leaves. These results strongly suggest, that Co does not replace Ni with respect to functional urease.  相似文献   

11.
Summary The concentration of nickel in some soils may be insufficient to meet the requirements of enzymes such as urease in soybeans and hydrogenase in Rhizobium. In an initial evaluation of nickel availability, several soils were examined for nickel content and microbial urease activity. Total and extractable nickel were determined by atomic emission spectrometry. Purified glucose and urea were added to soils to stimulate microbial growth and urease activity, the latter of which was monitored by the rate of decomposition of14C urea. Nickel also was added to some samples to determine if the indigenous supply was limiting. In one low-nickel soil (total Ni 13 ppm) urease activity increased 150% in response to additional nickel, while other soils (total Ni 22–3491 ppm) failed to respond to nickel. However, additional nickel did stimulate urease activity (up to 109%) in 3 out of 10 soils to which purified CaCO3 was added. Presumably the rise in pH associated with this treatment decreased nickel availability. Additions of Co, Mn, Fe, or Cu had no consistent effect on urease activity, thus indicating that the response to Ni was specific. Nickel fertilization increased leaf urease and nodule hydrogenase activity of soybeans grown in low-nickel soil, however, yield was not improved. These results may have practical implications in the nutrition of plants and micro-organisms that metabolize H2 and urea.  相似文献   

12.
Alleviation of nickel toxicity by ammonium supply to sunflower plants   总被引:1,自引:0,他引:1  
Zornoza  P.  Robles  S.  Martin  N. 《Plant and Soil》1999,208(2):221-226
Phytotoxicity of nickel (Ni) varies within plant species and cultivars as well as with the concentration of Ni in the rooting medium. Moreover, it is known that several nutrients can modify the plant response to excess Ni. Nitrogen can be absorbed by plants as different N forms and because N metabolism and Ni are closely related, a hydroponic experiment was conducted to study the effect of Ni toxicity on the growth, nutrient status of the different plant parts and leaf chlorophyll concentrations in sunflower plants (Helianthus annuus L.) cv Quipu grown with different forms of N supply. The plants were grown under controlled conditions for 35 days. Depending on the N source supplied, there were significant differences in the sensitivity of sunflower plants to excess Ni. Tolerance was lowest when grown with NO3 alone. A high Ni and NO3 as the only N source resulted in reduced dry weight and significant decreases in nutrient concentration. Plants supplied with a mixture of NO3 and NH4 + absorbed in the presence of Ni in solution about three times less Ni than those supplied with NO3 alone. Consequently, there were great differences in Ni concentrations between treatments. With a N nutrition of 100% NO3 -N, Ni supply led to severe growth inhibition. Just contrary, simultaneous supply of NO3 and NH4 + not only reduced Ni toxicity, but growth was even stimulated by Ni if supplied to plants fed with NO3 and NH4 +. This indicates the significant role of the N form supplied in the behaviour of Ni toxicity in sunflower plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48 h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species.  相似文献   

14.
Nickel in higher plants: further evidence for an essential role   总被引:3,自引:2,他引:1       下载免费PDF全文
Soybeans (Glycine max [L.] Merr.) grown in Ni-deficient nutrient solutions accumulated toxic urea concentrations which resulted in necrosis of their leaflet tips, a characteristic of Ni deficiency. Estimates of the Ni requirement of a plant were made by using seeds produced with different initial Ni contents. When compared to soybeans grown from seeds containing 2.5 nanograms Ni, plants grown from seeds containing 13 nanograms Ni had a significantly reduced incidence of leaflet tip necrosis. Plants grown from seeds containing 160 nanograms Ni produced leaves with almost no leaflet tip necrosis symptoms. Neither Al, Cd, Sn, nor V were able to substitute for Ni.

In other experiments, a small excess of EDTA was included in the nutrient solution in addition to that needed to chelate micronutrient metals. Under these conditions, nodulated nitrogen-fixing soybeans had a high incidence of leaflet tip necrosis, even when 1 micromolar NiEDTA was supplied. However, in nutrient solutions containing inorganic sources of N, 1 micromolar NiEDTA almost completely prevented leaflet tip necrosis, although no significant increase in leaf urease activity was observed. Cowpeas (Vigna unguiculata [L.] Walp) grown in Ni-deficient nutrient solutions containing NO3 and NH4 also developed leaflet tip necrosis, which was analogous to that produced in soybeans, and 1 micromolar NiEDTA additions prevented these symptoms.

These findings further support our contention that Ni is an essential element for higher plants.

  相似文献   

15.
Rhizobium-inoculatcd plants of Phaseolus vulgaris L. were grownwith different N-sources (nitrate, ammonium, urea) and differentconcentrations of urea. The distribution of growth between plantparts varied with N-sources. Nitrate and ammonium were moreinhibitory to nodulation than urea, which at 40 mol m–3N had no effect. Urease activity varied in amount and locationover a range of urea concentrations. At higher concentrations,more urea was transported to and increased urease activity wasfound in the shoot Lower levels of activity in plants relianton N2-fixation were consistent with a ureide-degradation pathwaynot involving urea. Moderate doses of urea could be assimilatedconcomitantly with N2-fixation. At higher levels of appliedurea, nodulation and ureide transport to the shoots were reduced,although increased growth could not be maintained at concentrationsof applied urea greater than 6.0 mol m–3 urea N. Key words: Phaseolus vulgaris, growth, nitrogen source, urease  相似文献   

16.
Microbial ureases hydrolyze urea to ammonia and carbon dioxide. Urease activity of an infectious microorganism can contribute to the development of urinary stones, pyelonephritis, gastric ulceration, and other diseases. In contrast to these harmful effects, urease activity of ruminal and gastrointestinal microorganisms can benefit both the microbe and host by recycling (thereby conserving) urea nitrogen. Microbial ureases also play an important role in utilization of environmental nitrogenous compounds and urea-based fertilizers. Urease is a high-molecular-weight, multimeric, nickel-containing enzyme. Its cytoplasmic location requires that urea enter the cell for utilization, and in some species energy-dependent urea uptake systems have been detected. Eucaryotic microorganisms possess a homopolymeric urease, analogous to the well-studied plant enzyme composed of six identical subunits. Gram-positive bacteria may also possess homopolymeric ureases, but the evidence for this is not conclusive. In contrast, ureases from gram-negative bacteria studied thus far clearly possess three distinct subunits with Mrs of 65,000 to 73,000 (alpha), 10,000 to 12,000 (beta), and 8,000 to 10,000 (gamma). Tightly bound nickel is present in all ureases and appears to participate in catalysis. Urease genes have been cloned from several species, and nickel-containing recombinant ureases have been characterized. Three structural genes are transcribed on a single messenger ribonucleic acid and translated in the order gamma, beta, and then alpha. In addition to these genes, several other peptides are encoded in the urease operon of some species. The roles for these other genes are not firmly established, but may involve regulation, urea transport, nickel transport, or nickel processing.  相似文献   

17.
The leaf-tip necrosis commonly observed after foliar fertilization of soybean [Glycine max (L.) Merr.] plants with urea is usually attributed to ammonia formed through hydrolysis of urea by plant urease. We recently found, however, that although addition of a urease inhibitor (phenylphosphorodiamidate) to foliar-applied urea increased the urea content and decreased the ammonia content and urease activity of soybean leaves, it increased the leaf-tip necrosis observed after foliar fertilization. We concluded that this necrosis was due to accumulation of toxic amounts of urea rather than formation of toxic amounts of ammonia. To confirm this conclusion, we measured the urea content, urease activity, and leaf-tep necrosis of leaves of soybean plants treated with urea after growth of the plants in nutrient solutions containing different amounts of nickel (Ni), which is an essential component of urease. We found that the urease activity of these leaves decreased, and that their urea content and leaf-tip necrosis increased, with decrease in the Ni content of the nutrient solution. Besides supporting the conclusion that the leaf-tip necrosis observed after foliar fertilization of soybean with urea is due to accumulation of toxic amounts of urea in the soybean leaves, these observations indicate that Ni-deficient plants may have a lower urease activity than plants that are not deficient in Ni and may therefore be more susceptible to leaf burn when foliar-fertilized with urea.  相似文献   

18.
N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.  相似文献   

19.
The supply of N in alpine soils is influenced by environmental factors (freeze-thaw, drying-rewetting, release of N from winter snowpack) which lead to a pulsed nature in plant N availability. To address the ability of alpine species to acquire N and grow when N is supplied in a pulsed manner, six alpine graminoid species, 3 sedges (Cyperaceae) and 3 grasses (Poaceae), were grown under 3 treatments: low and high N supply applied 3 times weekly, and a pulsed N supply applied once weekly at the same concentration as the high N treatment, but with the same total N supply as the low N treatment. Growth, biomass allocation, and N uptake were the same in all species for plants grown under a pulsed N treatment relative to a constant N supply with the same amount of total N. Root:shoot ratios and uptake of experimentally applied 15N indicated there were no adjustments in growth allocation or root uptake capacity in the plants to enhance the uptake of N when supplied in a pulsed relative to a more constant supply. The fertility of the site from which the graminoids were collected did not influence the plants' ability to respond to a high versus a low N supply, but instead growth form was more important. Grasses exhibited variation in growth, biomass allocation, and N uptake in response to changes in N supply, while sedges did not.  相似文献   

20.
The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study was to perform an in-depth analysis of the effect that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting 4 weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A non-fertilized control was also cultivated. Several parameters related with N metabolism were analysed at the end of growth period. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号