首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serratia marcescens outer membrane contains three different general diffusion porins: Omp1, Omp2 and Omp3. Omp1 was cloned and sequenced and it shows a great homology to the family of outer membrane porins that comprises the general porins of enteric bacteria. The gene for Omp1 was transferred into an expression plasmid and was expressed in Escherichia coli UH302 (E. coli UH302 pOM100), a porin deficient strain. Its expression confers a higher susceptibility towards different antibiotics to this strain. Omp1 was purified to homogeneity from outer membrane of E. coli UH302 pOM100. Reconstitution of the purified protein into black lipid bilayers demonstrated that it is a channel-forming component with a single-channel conductance of approximately 2 nS in 1 M KCl similar to that of other porins from enteric bacteria. Omp1 is slightly cation-selective. Its homology to already crystallised members of the family of enteric porins whose three-dimensional-structures are known and allowed the design of a topology model for Omp1. The charge distribution within a porin monomer is similar as in other general diffusion pores. The positively charged amino acids localised at the beta-strands opposite the external loop L3, which restrict the pore diameter in the porin monomer.  相似文献   

2.
Liu LN  Aartsma TJ  Frese RN 《The FEBS journal》2008,275(12):3157-3166
Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein complexes to be arranged in a densely packed energy-transducing network. Protein packing may play a determining role in the formation of functional photosynthetic domains and membrane curvature. To further investigate in detail the packing effects of like-protein photosynthetic complexes, we report an atomic force microscopy investigation on artificially created 2D crystals of the peripheral photosynthetic light-harvesting complexes 2 (LH2's) from the bacterium Rhodobacter sphaeroides. Instead of the usually observed one or two different crystallization lattices for one specific preparation protocol, we find seven different packing lattices. The most abundant crystal types all show a tilting of LH2. Most surprisingly, although LH2 is a monomeric protein complex in vivo, we find an LH2 dimer packing motif. We further characterize two different dimer configurations: in type 1, the LH2's are tilted inwards, and in type 2, they are tilted outwards. Closer inspection of the lattices surrounding the LH2 dimers indicates their close resemblance to those LH2's that constitute a lattice of zig-zagging LH2's. In addition, analyses of the tilt of the LH2's within the zig-zag lattice and that observed within the dimers corroborate their similar packing motifs. The type 2 dimer configuration exhibits a tilt that, in the absence of up-down packing, could bend the lipid bilayer, leading to the strong curvature of the LH2 domains as observed in Rhodobacter sphaeroides photosynthetic membranes in vivo.  相似文献   

3.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

4.
Z Lin  C Wang  X Feng  M Liu  J Li    C Bai 《Nucleic acids research》1998,26(13):3228-3234
Condensation of DNA by multivalent cations can provide useful insights into the physical factors governing the folding and packaging of DNA in vivo. In this work, local ordered structures of spermidine-DNA complexes prepared from different DNA concentrations have been examined by using atomic force microscopy (AFM) and polarizing microscopy (PM). Two types (I and II) of DNA condensates, significantly different in sizes, were observed. It was found that for extremely dilute solutions (DNA concentrations around 1 ng/microl or below), the DNA molecules would collapse into toroidal structures with a volume equivalent to a single lambda-DNA (type I). In relatively dilute solutions (DNA concentrations between 1 and 10 ng/microll), a significantly larger structure of multimolecular toroids (circular and elliptical, type II) were formed, which were constructed by many fine particles. Measurements show that the average diameter of these fine particles was similar to the outer diameter of the monomolecular toroids observed in extremely dilute solutions, and the thickness of the multimolecular toroids had a distribution of multi-layers with height increments of 11 nm, indicating that the multimolecular toroidal structures have lamellar characteristics. Moreover, by enriching the DNA-spermidine complexes in very diluted solution, branch-like structures constructed by subunits were observed by using AFM. The analysis of the pellets in polarizing microscopy reveals a liquid-crystal-like pattern. These observations suggest that DNA-spermidine condensation could have multiple stages, which are very sensitive to the DNA and spermidine concentrations.  相似文献   

5.
Detailed knowledge of the membrane framework surrounding the nicotinic acetylcholine receptor (AChR) is key to an understanding of its structure, dynamics, and function. Recent theoretical models discuss the structural relationship between the AChR and the lipid bilayer. Independent experimental data on the composition, metabolism, and dynamics of the AChR lipid environment are analyzed in the first part of the review. The composition of the lipids in which the transmembrane AChR chains are inserted bears considerable resemblance among species, perhaps providing this evolutionarily conserved protein with an adequate milieu for its optimal functioning. The effects of lipids on the latter are discussed in the second part of the review. The third part focuses on the information gained on the dynamics of AChR and lipids in the membrane, a section that also covers the physical properties and interactions between the protein, its immediate annulus, and the bulk lipid bilayer.  相似文献   

6.
Efficient photosynthetic energy transduction and its regulation depend on a precise supramolecular arrangement of the plant photosystem II (PSII) complex in grana membranes of chloroplasts. The topography of isolated photosystem II supercomplexes and the supramolecular organization of this complex in grana membrane preparations are visualized by high-resolution atomic force microscopy (AFM) in air in tapping mode with an active feedback control to minimize tip-sample interactions. Systematic comparison between topographic characteristics of the protrusions in atomic force microscopic images and well-established high-resolution and freeze-fracture electron microscopic data shows that the photosystem II organization can be properly imaged by AFM in air. Taking the protruding water-splitting apparatus as a topographic marker for PSII, its distribution and orientation in isolated grana membrane were analyzed. For the latter a new mathematical procedure was established, which revealed a preference for a parallel alignment of PSII that resembles the organization in highly ordered semicrystalline arrays. Furthermore, by analyzing the height of grana membrane stacks, we conclude that lumenal protrusions of adjacent photosystem II complexes in opposing membranes are displaced relative to each other. The functional consequences for lateral migration processes are discussed.  相似文献   

7.
Phospholipase D from Streptomyces chromofuscus (PLDSc) is a soluble enzyme known to be activated by the phosphatidic acid (PA)-calcium complexes. Despite the vast body of literature that has accumulated on this enzyme, the exact mechanism of activation remains poorly understood. In this work, we report the first observation of PLDSc activity in real time and at nanometer resolution using atomic force microscopy (AFM). AFM images of continuous and patchy dipalmitoylphosphatidylcholine (DPPC) bilayers were recorded, prior and after incubation with PLDSc. For continuous bilayers, the enzyme induced important morphological alterations; holes corresponding to the bilayer thickness were created, while an additional elevated phase, about 2.5 nm high, was observed. This bilayer blistering is believed to be due to the production of the negatively charged lipid PA that would cause localized repulsions between the bilayer and the underlying mica surface. By contrast, these elevated domains were not seen on patchy bilayers incubated with the enzyme. Instead, the shapes of DPPC patches were strongly deformed by enzyme activity and evolved into melted morphologies. These results point to the importance of lipid packing on PLD activity and illustrate the potential of AFM for visualizing remodeling enzymatic activities.  相似文献   

8.
Phospholipase D from Streptomyces chromofuscus (PLDSc) is a soluble enzyme known to be activated by the phosphatidic acid (PA)-calcium complexes. Despite the vast body of literature that has accumulated on this enzyme, the exact mechanism of activation remains poorly understood. In this work, we report the first observation of PLDSc activity in real time and at nanometer resolution using atomic force microscopy (AFM). AFM images of continuous and patchy dipalmitoylphosphatidylcholine (DPPC) bilayers were recorded, prior and after incubation with PLDSc. For continuous bilayers, the enzyme induced important morphological alterations; holes corresponding to the bilayer thickness were created, while an additional elevated phase, about 2.5 nm high, was observed. This bilayer blistering is believed to be due to the production of the negatively charged lipid PA that would cause localized repulsions between the bilayer and the underlying mica surface. By contrast, these elevated domains were not seen on patchy bilayers incubated with the enzyme. Instead, the shapes of DPPC patches were strongly deformed by enzyme activity and evolved into melted morphologies. These results point to the importance of lipid packing on PLD activity and illustrate the potential of AFM for visualizing remodeling enzymatic activities.  相似文献   

9.
Our understanding of how antimicrobial and cell-penetrating peptides exert their action at cell membranes would benefit greatly from direct visualization of their modes of action and possible targets within the cell membrane. We previously described how the cationic antimicrobial peptide, indolicidin, interacted with mixed zwitterionic planar lipid bilayers as a function of both peptide concentration and lipid composition [Shaw, J.E. et al., 2006. J. Struct. Biol. 154 (1), 42-58]. In the present report, in situ atomic force microscopy was used to characterize the interactions between three families of cationic peptides: (1) tryptophan-rich antimicrobial peptides--indolicidin and two of its analogues, (2) an amphiphilic alpha-helical membranolytic peptide--melittin, and (3) an arginine-rich cell-penetrating peptide--Tat with phase-separated planar bilayers containing 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC)/1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) or DOPC/N-stearoyl-D-erythro-sphingosylphosphorylcholine (SM)/cholesterol. We found that these cationic peptides all induced remodelling of the model membranes in a concentration, and family-dependent manner. At low peptide concentration, these cationic peptides, despite their different biological roles, all appeared to reduce the interfacial line tension at the domain boundary between the liquid-ordered and liquid-disordered domains. Only at high peptide concentration was the membrane remodelling induced by these peptides morphologically distinct among the three families. While the transformation caused by indolicidin and its analogues were structurally similar, the concentration required to initiate the transformation was strongly dependent on the hydrophobicity of the peptide. Our use of lipid compositions with no net charge minimized the electrostatic interactions between the cationic peptides and the model supported bilayers. These results suggest that peptides within the same functional family have a common mechanism of action, and that membrane insertion of short cationic peptides at low peptide concentration may also alter membrane structure through a common mechanism regardless of the peptide's origin.  相似文献   

10.
In situ atomic force microscopy (AFM) was used to investigate surface evolution during the growth of single crystals of turnip yellow mosaic virus (TYMV). Growth of the (101) face of TYMV crystals proceeded by two-dimensional nucleation. The molecular structure of the step edges and adsorption of individual virus particles and their aggregates on the crystalline surface were recorded. The surfaces of individual virions within crystals were visualized and seen to be quite distinctive with the hexameric and pentameric capsomers of the T = 3 capsids being clearly resolved. This, so far as we are aware, is the first direct visualization of the capsomere structure of a virus by AFM. In the course of recording the in situ development of the crystals, a profound restructuring of the surface arrangement was observed. This transformation was highly cooperative in nature, but the transitions were unambiguous and readily explicable in terms of an organized loss of classes of virus particles from specific lattice positions. In some cases areas of a single crystal surface were recorded in which were captured successive phases of the transition. We believe this provides the first visual record of a cooperative restructuring of the surface of a supramolecular crystal.  相似文献   

11.
The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques.  相似文献   

12.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function.Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 Å lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

13.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function. Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 A lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

14.
Sattin BD  Goh MC 《Biophysical journal》2004,87(5):3430-3436
The formation of the RecA/DNA nucleofilament on nicked circular double stranded (ds) DNA in the presence of ATPgammaS was studied using the atomic force microscope (AFM) at nanometer resolution. The AFM allowed simultaneous observation of both dsDNA substrate and RecA protein-coated sections such that they are highly distinguishable. Using a time series of images, the complex formation was monitored. AFM imaging provided direct evidence that assembly of the nucleofilaments occurs via a nucleation and growth mechanism. The nucleation step is much slower than the growth phase, as demonstrated by the predominance of naked dsDNA at early and middle time points, followed by the rapid appearance of partially then fully formed complexes. Observation of the formation of nucleation sites without accompanying growth on unnicked dsDNA enabled an estimate of the nucleation rate, of 5 x 10(-5) RecA min(-1) bp(-1). The published model for the analysis of RecA assembly on dsDNA deduces a single kinetic parameter that prevents the separate determination of nucleation rate and growth rate. By directly measuring the nucleation rate with the AFM, this model is employed to determine a growth rate of 202 min(-1). These AFM results provide the first direct evidence of previous results on complex formation obtained only by indirect means.  相似文献   

15.
In the apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/d-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption. How sugars are selected at the molecular level is, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the substrate specificity of rbSGLT1 on the single-molecule level, while competitive-uptake assays with isotope-labeled sugars were performed in the study of the stereospecificity of the overall transport. rbSGLT1-transfected Chinese hamster ovary (CHO) cells were used for both approaches. Evidence of binding of d-glucose to the extracellular surface of rbSGLT1 could be obtained using AFM tips carrying 1-thio-d-glucose coupled at the C1 position to a PEG linker via a vinylsulfon group. Competition experiments with monosaccharides in solution revealed the following selectivity ranking of binding: 2-deoxy-d-glucose >or= 6-deoxy-d-glucose > d-glucose > d-galactose >or= alpha-methyl glucoside; 3-deoxy-d-glucose, d-xylose, and l-glucose did not measurably affect binding. These results were different from those of competitive alpha-methyl glucoside transport assays, where the ranking of inhibition was as follows: d-glucose > d-galactose > 6-deoxy-d-glucose; no uptake inhibition by d-xylose, 3-deoxy-d-glucose, 2-deoxy-d-glucose, or l-glucose was observed. Taken together, these results suggest that the substrate specificity of SGLT1 is determined by different recognition sites: one possibly located at the surface of the transporter and others located close to or within the translocation pathway.  相似文献   

16.
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using F?ster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.  相似文献   

17.
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data.  相似文献   

18.
The protein that forms the gas vesicle in the cyanobacterium Anabaena flos-aquae has been imaged by atomic force microscopy (AFM) under liquid at room temperature. The protein constitutes "ribs" which, stacked together, form the hollow cylindrical tube and conical end caps of the gas vesicle. By operating the microscope in deflection mode, it has been possible to achieve sub-nanometer resolution of the rib structure. The lateral spacing of the ribs was found to be 4.6 +/- 0.1 nm. At higher resolution the ribs are observed to consist of pairs of lines at an angle of approximately 55 degrees to the rib axis, with a repeat distance between each line of 0.57 +/- 0.05 nm along the rib axis. These observed dimensions and periodicities are consistent with those determined from previous x-ray diffraction studies, indicating that the protein is arranged in beta-chains crossing the rib at an angle of 55 degrees to the rib axis. The AFM results confirm the x-ray data and represent the first direct images of a beta-sheet protein secondary structure using this technique. The orientation of the GvpA protein component of the structure and the extent of this protein across the ribs have been established for the first time.  相似文献   

19.
We have used in situ tapping mode atomic force microscopy (AFM) to study the structural morphology of two fragments of the influenza hemagglutinin protein bound to supported bilayers. The two proteins that we studied are the bromelain-cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the hemagglutinin protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. While BHA is water soluble at neutral pH and is known to bind to membranes via specific interactions with a viral receptor, FHA2 can only be solubilized in water with an appropriate detergent. Furthermore, FHA2 is known to readily bind to membranes at neutral pH in the absence of a receptor. Our in situ AFM studies demonstrated that, when bound to supported bilayers at neutral pH, both these proteins are self-assembled as single trimeric molecules. In situ acidification resulted in further lateral association of the FHA2 without a large perturbation of the bilayer. In contrast, BHA remained largely unaffected by acidification, except in areas of exposed mica where it is aggregated. Remarkably, these results are consistent with previous observations that FHA2 promotes membrane fusion while BHA only induces liposome leakage at low pH. The results presented here are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self-assembly of a membrane fusion protein.  相似文献   

20.
The chaperonin of the extremely thermophilic archaeon Sulfolobus solfataricus has been imaged for the first time under native conditions using the atomic force microscope. This technique allows to visualize the structure of biomolecules in solution under physiological conditions providing a nanometer resolution topographic image of the sample. Single molecule studies can reveal fine structural details, providing a powerful insight into the active conformation of a macromolecule, and also allowing to detect different conformational states corresponding to functional changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号