首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Squid axonal preparations consisting of the giant axon plus adhering small nerve fibres were incubated for 30 min with phospholipase A (1, 0.2 and 0.025 mg/ml); phospholipase C (10 and 0.5 mg/ml) or lysolecithin (1 and 0.2 mg/ml) followed by another 30 min incubation in normal sea water. The axoplasm and envelope (sheath) of the axonal preparation were then separated and the phospholipids and free amino acids determined. The released amino acids were also measured in the incubation solutions. Compared to phospholipase C, phospholipase A caused a much greater reduction in the free amino acid content of axoplasm and envelope; and a concomitant much greater increase in amino acids released into the incubation solutions, even when phospholipase A was used in concentrations which caused less phospholipid splitting than phospholipase C. Lysolecithin had a much weaker effect than phospholipase A. It is concluded that disruption of hydrophobic binding has a much greater effect on the structure of the non-lipid portion of the axonal membranes than does disruption of hydrophilic (electrostatic) forces of interaction. Our results can be interpreted in terms of the protein-crystal or mosaic models of membrane structure whereas they do not support the unit membrane hypothesis.  相似文献   

2.
The concentrations of free amino acids were measured in whole claw muscle, single fibres and haemolymph of Australian freshwater crayfish, Cherax destructor, during the intermoult stage. The average total pool of amino acids in short-sarcomere fibres (179 mmol kg(-1)) was 60% greater than in long-sarcomere fibres, due to higher concentrations of alanine, cysteine, glutamate, leucine and proline. The two fibre types exhibited differences in the banding pattern of the isoforms of troponin using gel electrophoresis. The average pool of amino acids in haemolymph was 2.7 mmol kg(-1). Cherax has symmetrical claws and the total pool of amino acids from whole muscles (approx. 79 mmol kg(-1)) was similar in left and right claw muscles. In animals acclimated to osmotic environments between 0 and 220 mOsm, the osmotic pressure of the haemolymph increased from 356 to 496 mOsm, but no systematic changes were observed in the amino acid profiles of muscles or haemolymph. The major findings were that (a) concentrations of amino acids differed between the two major fibre types in claw muscle and (b) amino acids in the muscle fibres did not play a major part in intracellular osmoregulation in Cherax, suggesting this species is an anisosmotic regulator.  相似文献   

3.
We have studied the levels of neuroactive amino acids in synaptosomes (P2 fraction) isolated from brain tissue of ten patients with medically intractable epilepsy who were undergoing temporal lobectomy. First, lateral temporal tissue (nonfocal) was removed followed by medial temporal tissue (focal). A synaptosomal fraction (P2) was immediately prepared from each tissue and analyzed for free amino acid concentrations. Statistically significant reductions were seen in glutamine and GABA concentrations in focal tissue compared to nonfocal tissue. The ratio of excitatory amino acids (aspartate and glutamate) to inhibitory amino acids (taurine and GABA) was significantly higher in focal tissue compared to nonfocal. The glutamine/glutamate ratio was significantly reduced. These data support the hypothesis that alterations in the balance between excitatory and inhibitory amino acids may be involved in the expression of epilepsy.  相似文献   

4.
The effect of vigabatrin (gamma-vinyl-gamma-aminobutyric acid), a new anticonvulsant drug, on the transmitter amino acids in rat cisternal CSF was studied. CSF was collected through a permanently implanted polyethylene cannula from freely moving rats at 5, 24, 48, and 96 h after administration of 1,000 mg/kg of vigabatrin. The free gamma-aminobutyric acid (GABA) level was elevated maximally (13.5-fold; p less than 0.01) at 24 h after injection. The homocarnosine (GABA-histidine) level also was increased (123%; p less than 0.01) at 24 h after injection, and its concentration remained at the same level for the next 3 days. Glycine and taurine concentrations had increased [31% (p less than 0.05) and 63% (p less than 0.01), respectively] at 5 h after injection. It is interesting that the levels of glutamate and aspartate increased [330% (p less than 0.05) and 421% (p less than 0.01), respectively] at 96 h after injection, the time when the free GABA level had returned to the baseline concentration and the vigabatrin level was 3% of the maximal concentration. The present study indicates that a single dose of vigabatrin in rats elevates levels of both the inhibitory and excitatory amino acids in CSF. However, the temporal profile of observed changes in relation to vigabatrin injection shows that neither the long-lasting elevation of GABA content nor the increase in glutamate and aspartate levels correlates with the level of vigabatrin in CSF. These findings suggest that the excitatory mechanisms are also augmented following acute administration of vigabatrin, especially when the content of GABA had decreased to the baseline level and the level of vigabatrin was low.  相似文献   

5.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate.  相似文献   

6.
N-Methyl-D-aspartate (NMDA) administration exacerbates neurological dysfunction after traumatic spinal cord injury in rats, whereas NMDA antagonists improve outcome in this model. These observations suggest that release of excitatory amino acids contributes to secondary tissue damage after traumatic spinal cord injury. To further examine this hypothesis, concentrations of free amino acids were measured in spinal cord samples from anesthetized rats subjected to various degrees of impact trauma to the T9 spinal segment. Levels of excitatory and inhibitory neurotransmitter amino acids [gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, taurine] and levels of nonneurotransmitter amino acids (asparagine, glutamine, alanine, threonine, serine) were determined at 5 min, 4 h, and 24 h posttrauma. Uninjured surgical (laminectomy) control animals showed modest but significant declines in aspartate and glutamate levels, but not in other amino acids, at all time points. In injured animals, the excitatory amino acids glutamate and aspartate were significantly decreased by 5 min posttrauma, and remained depressed at 4 h and 24 h as compared with corresponding laminectomy controls. In contrast, the inhibitory amino acids, glycine, GABA, and taurine, were decreased at 5 min postinjury, had partially recovered at 4 h, and were almost fully recovered at 24 h. The nonneurotransmitter amino acids were unchanged at 5 min posttrauma and significantly increased at 4 h, with partial recovery at 24 h. At 4 h postinjury, severe trauma caused significantly greater decreases in aspartate and glutamate than did either mild or moderate injury. These findings are consistent with the postulated role of excitatory amino acids in CNS trauma.  相似文献   

7.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

8.
Clonic seizures were induced in Swiss or DBA/2 mice by methyl-6-7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), 0.048 mmol/kg i.p., or by methyl-beta-carboline-3-carboxylate (beta-CCM), 0.044 mmol/kg i.p. Measurement of regional brain (cortex, hippocampus, striatum, and cerebellum) amino acid levels after 15 min of seizure activity showed increases in gamma-aminobutyric acid (GABA) (in all regions after beta-CCM, and in cortex and hippocampus after DMCM), and an increase in glycine in the striatum after beta-CCM. Aspartate levels fell (in cortex and hippocampus) after DMCM, but were unchanged in all regions after beta-CCM. Glutamate levels fell in cortex after beta-CCM and in striatum after DMCM. Pretreatment with the excitatory amino acid receptor antagonist, 2-amino-7-phosphonoheptanoic acid, 0.5 mmol/kg i.p., 45 min prior to the beta-carboline, significantly increased the ED50 for DMCM-induced clonic seizures (4.68 mumol/kg vs. 9.39 mumol/kg). Similar pretreatment did not significantly alter the ED50 for beta-CCM (4.22 mumol/kg vs. 6.6 mumol/kg). Pretreatment with 2-amino-7-phosphonoheptanoic acid, 1.0 mmol/kg, blocked the increase in GABA content produced by DMCM but not the fall in cortical aspartate content. Potassium-induced release of preloaded D-[3H]aspartate from rat cortical or hippocampal minislices was enhanced in the presence of DMCM (100 microM). In contrast, stimulated release of D-[3H]aspartate (from cortex or hippocampus) was not altered in the presence of beta-CCM (100 microM). Although DMCM and beta-CCM are both considered to induce convulsion by acting at the GABA--benzodiazepine receptor complex, the convulsions differ in several pharmacological and biochemical respects. It is suggested that enhanced release of excitatory amino acid neurotransmitters plays a more important role in seizures induced by DMCM.  相似文献   

9.
Abstract— The uptake of l -aspartate, l -glutamate and glycine each appeared to be mediated by two kinetically distinct systems with apparent Km's of the order of 10 ('high affinity') and 100 μM ('low affinity') in slices of cat spinal cord, whereas the uptake of GABA appeared to be mediated by a single system of high affinity. The high affinity uptake of these amino acids in slices of spinal grey matter was approximately 5 times faster than that in slices of spinal white matter. The high affinity uptake systems in the cord slices survived homogenisation of the tissue under conditions known to preserve nerve terminals. Subcellular fractionation studies indicated that osmotically-sensitive particles of equilibrium density equivalent to that of 1.0 m -sucrose were at least in part responsible for the uptake of these amino acids. Inhibition studies indicated that three structurally specific systems of high affinity transported these amino acids:
  • 1 specific for glycine—not inhibited by GABA or any of the other depressant amino acids found in cat spinal cord;
  • 2 specific for GABA—not inhibited by glycine, taurine, l -aspartate or l -glutamate and (3) specific for l -aspartate and l -glutamate—not inhibited by glycine or GABA but strongly inhibited by various acidic amino acids such as l -cysteate and l -cysteine sulphinate.
The high affinity uptake of these amino acids was not inhibited by any of the known antagonists of the postsynaptic actions of these amino acids—strychnine (glycine), bicuculline and benzyl penicillin (GABA), methioninesulphoximine and l -glutamate diethyl ester (l -aspartate and l -glutamate). p-Chloromercuriphenylsulphonate strongly inhibited the high affinity uptake of glycine and GABA but was much less effective as an inhibitor of l -aspartate/l -glutamate high affinity uptake. This is in good agreement with microelectrophoretic studies in which this mercurial was found to potentiate depression of neuronal firing induced by glycine and GABA much more readily than excitation induced by l -aspartate or l -glutamate. These findings suggest the importance of high affinity transport processes in the removal of amino acids from the synaptic environment.  相似文献   

10.
—The distribution of ChAT (choline acetyltransferase), GAD (glutamate decarboxylase) and acetylcholinesterase in some sensory and motor nerves of the shore crab, Carcinus maenas, has been investigated using micro-assay techniques. ChAT was concentrated in the afferent nerve fibres of the thoracic-coxal muscle receptor as well as in the coxo-basal chordotonal receptor nerve and other leg sensory fibres. GAD was found in leg motor nerves including the promotor and remotor muscle nerves, being undetectable in the sensory nerves. Acetylcholinesterase was found in similar levels in both sensory and motor nerves assayed. Amino acid analysis using a micro-dansylation technique showed that sensory nerves had low GABA levels, whereas the leg nerve including motor fibres had substantially higher GABA concentrations. GAD and GABA were also found in low amounts in the leg promoter mucle, which is consistent with GABA being a neuromuscular transmitter.  相似文献   

11.
The rates of efflux of pre-loaded amino acids, and associated steady-state volumes, were measured in cells in cerebrocortical minislices prepared from chronically (4 day) hypo- and hypernatraemic rats. The findings were compared with those obtained when cells from normonatraemic rats were acutely exposed to comparable levels of anisosmotic stress. In the presence of 122 mmol/l Na+ cells from normal rats showed increases in the rates of efflux of -aspartate and GABA, and significant swelling (both by comparison with levels in media containing 142 mmol/l Na+). Conversely there was no acceleration of efflux in cells from hyponatraemic rats (plasma Na+=119–126 mmol/l) and volumes were preserved at levels comparable with those in isomotically incubated cells from normal rats. In media containing 164 mmol/l Na+ amino acid efflux in cells from normal rats was retarded, and shrinkage occurred. In cells from chronically hypernatraemic rats (plasma Na+=160–166 mmol/l) the rates of efflux of -aspartate and -glutamate were accelerated by comparison with cells from normal rats, with volume preservation. However there was no increase in the rate of GABA or glycine efflux, and cell swelling was observed. It is concluded (i) that during chronic hyponatraemia the presence of -aspartate or GABA is associated with cell volume preservation, (ii) during chronic hypernatraemia acidic, but not neutral, amino acids are also effective in this respect, and (iii) that the markedly differing patterns of efflux responses to acute and chronic anisosmotic stress are likely to reflect chronic volume-regulatory adaptations of the efflux mechanism(s).  相似文献   

12.
Using a gas chromatography procedure, the levels of several amino acids were determined in individual excitatory and inhibitory axons, in bundles of sensory fibers, and in muscle tissue from the walking limb of the lobster, Homarusamericanus. In addition, the levels of amino acids in the hemolymph were also determined. Of the amino acids assayed in the excitatory and inhibitory axons and in the sensory fibers the level of aspartate was highest whereas in hemolymph and muscle, aspartate had one of the lowest values. The levels of glutamate, glycine and proline were significantly higher in the excitatory axons than in the inhibitory axons. GABA was present in inhibitor axons and in the muscle tissue which these axons innervate and was not detected in the other axons assayed nor in the hemolymph. β-Alanine was present at low levels in hemolymph and in muscle but was not detected in the excitatory nor in the inhibitory axons.  相似文献   

13.
SYNOPSIS. The amino acid transmitters can be placed in two generalcategories, excitatory and inhibitory. This discussion focuseson the role of the inhibitory transmitter GAB A and the excitatoryamino acids aspartate and glutamate in the control of gonadotropinsecretion and reproductive behavior. GABAergic neurotransmissionin the preoptic area inhibits gonadotropin secretion via directsynaptic contact with LHRH neurons and possibly through presynapticinhibition of noradrenergic fibers that stimulate LH release.In the arcuate-median eminence, GABA acting at GABAA receptorsincreases gonadotropin release by inhibiting a currently unidentifiedinhibitory interneuron. In regard to reproductive behavior,GABA acting in the preoptic area inhibits female sexual receptivitywhereas GABA in the mediobasal hypothalamus and the midbraincentral gray facilitates this behavior. The effects of GABAon reproductive behavior do not appear to be secondary to actionson defensive or locomotor behavior. Gonadal steroids modulateactivity at the GABAA receptor in a highly complex manner andthese effects may be involved in the role GABA plays in controllinggonadotropin secretions as well as behavior. The excitatory amino acids also affect gonadotropin secretion,exerting a stimulatory effect both in the preoptic area andat the level of the median eminence. When a specific antagonistfor one of the excitatory amino acid receptors is infused intothe preoptic area or when an excitatory amino acid receptoragonist is infused into the mediobasal hypothalamus, femalesexual behavior is inhibited. There have only been limited reportsof steroid modulation of excitatory amino acid neurotransmission.  相似文献   

14.
The study was centered on the changes in the amino acid content of nerve endings (synaptosomes) induced by drugs that alter the metabolism of glutamate or gamma-aminobutyric acid (GABA), and that possess convulsant or anticonvulsant properties. The onset of seizures induced by various convulsant agents was associated with a decreased content of GABA and an increased content of glutamate in synaptosomes. The concurrent administration of pyridoxine prevented both the biochemical changes and the convulsions. The administration of gabaculine to mice resulted in large increases in the GABA content of synaptosomes that were counteracted by decreases in glutamate, glutamine, and aspartate levels such that the total content of the four amino acids remained unchanged. The administration of aminooxyacetic acid (0.91 mmol/kg) resulted initially in seizure activity, but subsequently in an anticonvulsant action. No simple relationship existed between the excitable state of the brain induced by aminooxyacetic acid and the changes in the synaptosomal levels of any of the amino acid transmitters. A hypothesis was, however, formulated that explained the convulsant-cum-anticonvulsant action of aminooxyacetic acid on the basis of compartmentation of GABA within the nerve endings.  相似文献   

15.
The free amino acid levels in the peripheral nerve of the crab, Carcinus maenas, have been measured using various extraction procedures. A comparison of the amino acid levels of the peripheral and central nervous system of the crab has revealed marked differences in the levels of certain amino acids. Aspartate and glutamate were much lower in central nervous tissue than peripheral whilst glycine was much higher. The results are discussed in relation to the extreme steepness of the concentration gradient for amino acids across the neuronal membranes of crustaceans and a comparison is made with other groups. The significance of the differences in amino acid concentration in specific areas of nervous tissue is discussed in relation to the functions of the amino acids and to possible transmitter activity.  相似文献   

16.
Gamma amino butyric acid (GABA) is believed to be the principal inhibitory neurotransmitter in the mammalian central nervous system, a function that has been extended to a number of invertebrate systems. We have used a specific antiserum raised against GABA to demonstrate GABA-like immunoreactivity in the radial nerve cord (RNC), tube feet and the digestive system of the asteroid Asterias rubens. In the RNC, immunoreactivity was restricted to ectoneural fibres and cell bodies while in the tube feet fibres were revealed in the basal nerve ring and longitudinal nerve. In the gut, extensive labelling was apparent in the basi-epithelial plexus as well as in mucosal perikarya.  相似文献   

17.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   

18.
This study analyzes the relationship between amino acids and pain perception during active labor. Cerebrospinal fluid (CSF) levels of the excitatory amino acids (EAAs)—glutamate, aspartate and their amide forms, inhibitory amino acids (IAAs)—glycine, γ-amino butyric acid (GABA) and taurine and nitric oxide (NO) related compounds—arginine and citrulline (by-product of NO synthesis) were compared between pregnant women at term pregnancy with labor pain (n = 38) and without labor pain (Caesarian section; n = 30). The levels of aspartate, glycine, GABA and citrulline were significantly higher; whilst taurine was significantly lower in the labor pain group. These findings suggest that aspartate and NO are associated with labor pain. An inhibitory role for the IAA taurine and a pronociceptive role for glycine in labor pain are proposed.  相似文献   

19.
Summary The effect of GABA (-aminobutyric acid) on three muscles innervated by the common inhibitory axon in the walking leg of the crabOcypode cursor, was studied. The muscles differ in the percentage of fibres responding to GABA by membrane resistance decrease, and in the magnitude of the response (Table 1). In addition to the postsynaptic effect (on muscle fibre membrane) of GABA, a presynaptic effect (on excitatory terminals) was observed in one muscle, resulting in more effective inhibition of excitatory potentials. The presynaptic effect sustained as long as GABA was present, while the postsynaptic effect underwent desensitization (Fig. 2). The data demonstrate differential inhibition of distinct functional units innervated by a common axon. The channeling of inhibitory information results from spatial organization of innervation, differing in location (pre-or postsynaptic) and density.This investigation was supported by grant AZ11 1955 for Stiftung Volkswagenwerk.  相似文献   

20.
The effects of acetylcholine (ACh) on phosphoinositide metabolism and associated changes in nerve fibre membranes of Carcinus maenas and Eriphia spinifrons were studied. It was shown that as the content of triphosphoinositide in ACh-treated crab nerve fibre decreased, the permeability of the fibres to K+ increased, which led to nerve fibre depolarization. Proserini protected nerve fibres against the effect of ACh. These observations appear to implicate the participation of acetylcholinesterase in triphosphoinositide hydrolysis. Our results indicate that phosphoinositides participate in the control of the permeability of crab nerve fibres to potassium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号