首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of dA and T analogues suitable for the study of protein DNA interactions have been incorporated into the central d(ATAT) sequence within d(GACGATATCGTC). The individual analogues have one potential protein contact (either a hydrogen-bonding group or a CH3 group capable of a van der Waals interaction) deleted. In general, the modified bases do not perturb the overall structure of the dodecamer, enabling results obtained to be simply interpreted in terms of loss of protein DNA contacts. We have used the modified oligodeoxynucleotide set to study the recognition of DNA by the EcoRV restriction endonuclease [recognition sequence d(GATATC)]. The kcat and Km values for the set have been determined, and a comparison with results seen with the parent oligodeoxynucleotide (containing no modified bases) has been carried out. Three classes of results are seen. First, some analogues lead to no change in kinetic parameters, meaning no enzyme contact at the altered site. Second (this is seen for most of the modified oligodeoxynucleotides), a drop in the kcat/Km ratio relative to the parent is observed. This comes mainly from a decrease in kcat, implying that the endonuclease uses the interaction under study to lower the transition-state barrier rather than to bind the substrate. Analyses of these results show that the drop in kcat/Km is what would be expected for the simple loss of a hydrogen bond or a CH3 contact between the enzyme and the oligodeoxynucleotide. This implies a contact of these types at these sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have developed an assay for online detection of DNA cleavage by restriction endonucleases, suitable for the high throughput screening of the activity and flanking sequence preference of restriction endonuclease variants. For this purpose oligodeoxynucleotides were used, labeled with either 6-FAM or TAMRA whose fluorescence is quenched by a neighboring DABCYL group. After endonucleolytic cleavage the products are too short to remain double-stranded and the fluorophor labeled strand is released with concomitant increase in fluorescence which can be easily quantified. Employing this method, cleavage reactions can be monitored continuously, allowing for fast detection of specific activity as well as determination of kinetic parameters. To demonstrate the reliability of our assay we measured K(M) and k(cat) values for the restriction endonuclease EcoRV and obtained results similar to those obtained with established assays. Moreover, our method makes it possible to observe the cleavage of two different substrates differing in the sequences flanking the EcoRV site and labeled with different fluorophors in competition in a single experiment. This assay can be carried out in a microplate format, which allows for the analysis of many restriction endonuclease variants in parallel.  相似文献   

3.
A complete set of dA and T analogues designed for the study of protein DNA interactions has been prepared. These modified bases have been designed by considering the groups on the dA and T bases that are accessible to proteins when these bases are incorporated into double-helical B-DNA [Seeman, N. C., Rosenberg, J. M., & Rich, A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 804-808]. Each of the positions on the two bases, having the potential to interact with proteins, have been subject to nondisruptive, conservative change. Typically a particular group (e.g., the 6-NH2 of dA or the 5-CH3 of T) has been replaced with a hydrogen atom. Occasionally keto groups (the 2- and 4-keto oxygen atoms of T) have been replaced with sulfur. The base set has been incorporated into the self-complementary dodecamer d(GACGATATCGTC) at the central d(ATAT) sequence. Melting temperature determination shows that the modified bases do not destabilize the double helix. Additionally, circular dichroism spectroscopy shows that almost all the altered bases have very little effect on overall oligodeoxynucleotide conformation and that most of the modified oligomers have a B-DNA type structure. d(GATATC) is the recognition sequence for the EcoRV restriction modification system. Initial rate measurements (at a single oligodeoxynucleotide concentration of 20 microM) have been carried out with both the EcoRV restriction endonuclease and modification methylase. This has enabled a preliminary identification of the groups of the dA and T bases within the d(GATATC) sequence that make important contacts to both proteins.  相似文献   

4.
Complexes of the type II restriction endonuclease EcoRV with a variety of short, selfcomplementary deoxyoligonucleotides have been crystallized. The best crystals diffract to about 2.7 A resolution and consist of 1:1 complexes between endonuclease dimers and duplexes of the cognate decamer GGGATATCCC containing the hexameric RV recognition sequence GATATC. Crystals with the non-cognate DNA octamer duplexes CGAGCTCG and CGAATTCG diffract to 3.0 and 3.5 A resolution, respectively, and contain two DNA duplexes per enzyme dimer.  相似文献   

5.
Three kinds of deoxyribonucleases (peaks A, B, and C) were separated from purified rat liver nuclei on DEAE-cellulose column chromatography, and their characteristics were partially studied. Peaks A and B had endonuclease activities under acidic conditions with low substrate specificity and did not require divalent metal ions. Peak C had an exonuclease activity under alkaline conditions with substrate specificity for denatured DNA or single stranded homopolymer and required divalent cations. Peak C degraded 3'-terminally mismatched substrate much faster than 3'-terminally matched substrate.  相似文献   

6.
The DNA methylated by Hha I methylase was resistant against cleavage of Hae II or Aha II endonuclease indicating that the methyl group of the C5 position of the inmost cytosine nucleotide interferes with the interaction between the enzyme and the hexameric recognition sequence. Considering that Hae II or Aha II methylase has not been isolated yet, the result explained above is a useful information for protecting a double stranded DNA from being cleaved by Hae II or Aha II endonuclease. In contrast to Hae II or Aha II endonuclease, Ban I endonuclease which also has Hha I sequence as its tetrameric core was able to cleave the same DNA normally. This result suggests that the C5 position of the inmost pyrimidine nucleotide is not an important contact point between Ban I endonuclease and its hexameric recognition sequence.  相似文献   

7.
Two mutants of the EcoRI endonuclease (R200K and E144C) predominantly nick only one strand of the DNA substrate. Temperature sensitivity of the mutant enzymes allowed us to study the consequences of inflicting DNA nicks at EcoRI sites in vivo. Expression of the EcoRI endonuclease mutants in the absence of the EcoRI methyltransferase induces the SOS DNA repair response and greatly reduces viability of recA56, recB21 and lexA3 mutant strains of Escherichia coli. In parallel studies, overexpression of the EcoRV endonuclease in cells also expressing the EcoRV methyltransferase was used to introduce nicks at non-cognate EcoRV sites in the bacterial genome. EcoRV overproduction was lethal in recA56 and recB21 mutant strains and moderately toxic in a lexA3 mutant strain. The toxic effect of EcoRV overproduction could be partially alleviated by introduction into the cells of multiple copies of the E. coli DNA ligase gene. These observations suggest that an increased number of DNA nicks can overwhelm the repair capacity of DNA ligase, resulting in the conversion of a proportion of DNA nicks into DNA lesions that require recombination for repair.  相似文献   

8.
The genes, encoding the restriction endonuclease and modification methylase EcoRV have been cloned from the natural plasmid pLG13 into pBR32 derivative vector pIL233. A resultant clone, expressing both enzyme activities, was used as a source of DNA for sequencing these genes by a procedure, that employed construction of deletion derivatives used to locate borders (by means of a functional test) and to sequence ca. 300 bp near the deletion breakpoint. From the sequence data, we infer that the endonuclease, a 29 KDa protein, and the methylase, a 36 KDa protein, are transcribed from a 310 bp intergenic region in opposite directions. There is no apparent homology between the enzymes and genes of the EcoRI and the EcoRV systems. A synthetic decamer, containing the EcoRV endonuclease recognition sequence and a phosphoamide bond at the cleavage point, is not cleaved by the highly purified endonuclease; the unmodified synthetic decamer is cleaved at the same conditions, only that the cleavage occurs to produce a blunt end--GAT/ATC, and not in a place previously reported (GATAT/C).  相似文献   

9.
An improved procedure for the preparation of 3-deaza-2'-deoxyadenosine (d3CA) is described which is suitable for the synthesis of gram quantities of this analogue. Using phosphoramidite chemistry d3CA has been incorporated into the Eco RV restiction endonuclease recognition sequence (underlined) present in the self-complementary dodecamer d(GACGATATCGTC). The modified oligonucleotides have been thoroughly characterised by nucleoside composition analysis, circular dichroism and thermal melting studies. Studies with Eco RV show that incorporation of d3CA into either the central or outer dA-dT base-pair results in a substantial reduction in the rate of cleavage. The two-step conversion of d3CA to 3-deaza-2'-deoxyadenosine-5'-O-triphosphate (d3CATP) via the 5'-O-tosylate is also described. d3CATP is not a substrate in the poly[d(AT)].poly[d(AT)] primed polymerisation for either E. coli DNA polymerase I or Micrococcus luteus DNA polymerase. In a more detailed kinetic analysis d3CATP was shown to be a competitive inhibitor of E. coli DNA polymerase I with respect to dATP.  相似文献   

10.
The previously constructed plasmid pILRV8 that induces endonuclease EcoRV gene overexpression kills cells of some E. coli strains under the induction of this enzyme synthesis. Cell transformation by natural plasmid pLG13 carrying genes of the EcoRV restriction--modification system was found to appreciably enhance cell viability ("survival") under endonuclease overproduction. A plasmid pLG13 region located in immediate proximity to the methylase gene was shown to be responsible for the above effect. This region was also capable for autonomous replication. The analysis of the DNA primary structure in the found replicator region allowed to refer the pLG13 to ColE1 family plasmids. Perturbations in the region lead to loss of the "survival" effect and change of the plasmid replicative properties. A relationship between the replicon elements, the EcoRV genes region and "survival" effect is discussed. Based on the replicon found multicopy vector molecules have been constructed.  相似文献   

11.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

12.
With the use of the strain-overproducer restriction endonuclease R.EcoRV was isolated and purified to homogeneity. The molecular mass of the enzyme was determined by gel filtration and polyacrylamide gel electrophoresis to be 25 000 daltons. According to the data of immunological tests R.EcoRV differs in its antigenic characteristics from restriction endonucleases R.EcoRI and R.EcoRII. Dependence of enzyme activity on pH, ionic strength, temperature, presence of divalent cations (Mn2+, Mg2+, Co2+, Zn2+, Ni2+ and Cd2+) and organic solvents (glycerol, dimethylsulfoxide, ethanol) has been studied. It was shown that under conditions of replacement of Mg2+ for Mn2+ or after addition of organic solvents relaxation of R.EcoRV specificity takes place. It was shown also that R.EcoRV is able to digest T-even bacteriophage DNAs with different types and extents of modification. DNA modified by the action of MR.EcoRV system in vivo is susceptible to R.EcoRV in vitro. Under conditions of relaxed specificity noncanonical sites are susceptible to R.EcoRV attack. The fragments resulted may be cloned in canonical pBR322 EcoRV site.  相似文献   

13.
A number of recombinant plasmids, containing EcoRV restriction-modification genes have been constructed. Individual genes of this system were introduced into plasmids of various incompatibility groups. Promoter regions of genes encoding methylase and restrictase have been cloned and studied. With the use of specialized vector pVE8 it was shown that the efficiency of the endonuclease gene promoter is comparable with early lambda phage promoters and produced about 70% of PL efficiency. The efficiency of the methylase gene promoter region was twice less than the efficiency of the restriction endonuclease gene promoter. Plasmid with restriction endonuclease gene promoter located downstream in relation to the additional regulatable phage lambda promoter PL has been obtained. It enabled us to construct strains 30-40 fold overproducing this enzyme under conditions of inactivation of the temperature sensitive phage repressor c1857. This construction directs the production of a high level (10%) of the total cellular soluble proteins) of the EcoRV restriction enzyme. The factors that influenced the level of enzyme synthesis under induction are discussed.  相似文献   

14.
The restriction endonuclease EcoRV has been characterized in structural and functional terms in great detail. Based on this detailed information we employed a structure-guided approach to engineer variants of EcoRV that should be able to discriminate between differently flanked EcoRV recognition sites. In crystal structures of EcoRV complexed with d(CGGGATATCCC)(2) and d(AAAGATATCTT)(2), Lys104 and Ala181 closely approach the two base pairs flanking the GATATC recognition site and thus were proposed to be a reasonable starting point for the rational extension of site specificity in EcoRV [Horton,N.C. and Perona,J.J. (1998) J. Biol. Chem., 273, 21721-21729]. To test this proposal, several single (K104R, A181E, A181K) and double mutants of EcoRV (K104R/A181E, K104R/A181K) were generated. A detailed characterization of all variants examined shows that only the substitution of Ala181 by Glu leads to a considerably altered selectivity with both oligodeoxynucleotide and macromolecular DNA substrates, but not the predicted one, as these variants prefer cleavage of a TA flanked site over all other sites, under all conditions tested. The substitution of Lys104 by Arg, in contrast, which appeared to be very promising on the basis of the crystallographic analysis, does not lead to variants which differ very much from the EcoRV wild-type enzyme with respect to the flanking sequence preferences. The K104R/A181E and K104R/A181K double mutants show nearly the same preferences as the A181E and A181K single mutants. We conclude that even for the very well characterized restriction enzyme EcoRV, properties that determine specificity and selectivity are difficult to model on the basis of the available structural information.  相似文献   

15.
An assay is described to measure methylation of biotinylated oligonucleotide substrates by DNA methyltransferases using [methyl-3H]-AdoMet. After the methylation reaction the oligonucleotides are immobilized on an avidin-coated microplate. The incorporation of [3H] into the DNA is quenched by addition of unlabeled AdoMet to the binding buffer. Unreacted AdoMet and enzyme are removed by washing. To release the radioactivity incorporated into the DNA, the wells are incubated with a non-specific endonuclease and the radioactivity determined by liquid scintillation counting. As an example, we have studied methylation of DNA by the EcoRV DNA methyltransferase. The reaction progress curves measured with this assay are linear with respect to time. Methylation rates linearly increase with enzyme concentration. The rates are comparable to results obtained with the same enzyme using a different assay. The biotin-avidin assay is inexpensive, convenient, quantitative, fast and well suited to process many samples in parallel. The accuracy of the assay is high, allowing to reproduce results within +/- 10%. The assay is very sensitive as demonstrated by the detection of incorporation of 0.8 fmol methyl groups into the DNA. Under the experimental conditions, this corresponds to methylation of only 0.03% of all target sites of the substrate. Using this assay, the DNA methylation activity of some M.EcoRV variants could be detected that was not visible by other in vitro methylation assays.  相似文献   

16.
17.
Reid SL  Parry D  Liu HH  Connolly BA 《Biochemistry》2001,40(8):2484-2494
Oligonucleotides labeled with hexachlorofluorescein (hex) have enabled the interaction of the restriction endonuclease EcoRV with DNA to be evaluated using fluorescence anisotropy. The sensitivity of hex allowed measurements at oligonucleotide concentrations as low as 1 nM, enabling K(D) values in the low nanomolar range to be measured. Both direct titration, i.e., addition of increasing amounts of the endonuclease to hex-labeled oligonucleotides, and displacement titration, i.e., addition of unlabeled oligonucleotide to preformed hex-oligonucleotide/EcoRV endonuclease complexes, have been used for K(D) determination. Displacement titration is the method of choice; artifacts due to any direct interaction of the enzyme with the dye are eliminated, and higher fluorescent-labeled oligonucleotide concentrations may be used, improving signal-to-noise ratio. Using this approach (with three different oligonucleotides) we found that the EcoRV restriction endonuclease showed a preference of between 1.5 and 6.5 for its GATATC target sequence at pH 7.5 and 100 mM NaCl, when the divalent cation Ca2+ is absent. As expected, both the presence of Ca2+ and a decrease in pH value stimulated the binding of specific sequences but had much less effect on nonspecific ones.  相似文献   

18.
We have used site-directed mutagenesis of the EcoRV restriction endonuclease to change amino acid side chains that have been shown crystallographically to be in close proximity to the scissile phosphodiester bond of the DNA substrate. DNA cleavage assays of the resulting mutant proteins indicate that the largest effects on nucleolytic activity result from substitution of Asp74, Asp90, and Lys92. We suggest on the basis of structural information, mutagenesis data, and analogies with other nucleases that Asp74 and Asp90 might be involved in Mg2+ binding and/or catalysis and that Lys92 probably stabilizes the pentacovalent phosphorus in the transition state. These amino acids are part of a sequence motif, Pro-Asp...Asp/Glu-X-Lys, which is also present in EcoRI. In both enzymes, it is located in a structurally similar context near the scissile phosphodiester bond. A preliminary mutational analysis with EcoRI indicates that this sequence motif is of similar functional importance for EcoRI and EcoRV. On the basis of these results, a proposal is made for the mechanism of DNA cleavage by EcoRV and EcoRI.  相似文献   

19.
Isolation and characterization of the Escherichia coli mutH gene product   总被引:28,自引:0,他引:28  
The Escherichia coli mutH gene product has been isolated in near homogeneous form using an in vitro complementation assay for DNA mismatch correction (Lu, A.-L., Clark, S., and Modrich, P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4639-4643) which is dependent on mutH function. The protein has a subunit Mr of 25,000, and purified preparations contain a Mg2+-dependent endonuclease activity which cleaves 5' to the dG of d(GATC) sequences to generate 5'-phosphoryl and 3'-hydroxyl termini. Symmetrically methylated d(GATC) sites are resistant to the endonuclease, hemimethylated sequences are cleaved on the unmethylated strand, and unmethylated d(GATC) sites are usually subject to scission on only one DNA strand. Although this endonuclease activity is extremely weak (less than 1 scission/h/mutH monomer equivalent) and cleavage at a d(GATC) site does not depend on the presence of a mismatched base pair within the DNA substrate, the activity does not appear to be a contaminant of mutH preparations. d(GATC) endonuclease activity and mutH complementing activity co-purify through multiple column steps without change in relative specific activities, and both activities co-electrophorese under native conditions. These findings suggest that the mutH product functions at the strand discrimination stage of mismatch correction and that this stage of the reaction involves scission of the unmethylated DNA strand.  相似文献   

20.
J A Grasby  B A Connolly 《Biochemistry》1992,31(34):7855-7861
The stereochemical course of the reaction catalyzed by the EcoRV restriction endonuclease has been determined. This endonuclease recognizes GATATC sequence and cuts between the central T and dA bases. The Rp isomer of d(GACGATsATCGTC) (this dodecamer contains a phosphorothioate rather than the usual phosphate group between the central T and dA residues, indicated by the s) was a substrate for the endonuclease. Performing this reaction in H2 18O gave [18O]dps(ATCGTC) (a pentamer containing an 18O-labeled 5'-phosphorothioate) which was converted to [18O]dAMPS with nuclease P1. This deoxynucleoside 5'-[18O]phosphorothioate was stereospecifically converted to [18O]dATP alpha S with adenylate kinase and pyruvate kinase [Brody, R. S., & Frey, P. A. (1981) Biochemistry 20, 1245-1251]. Analysis of the position of the 18O in this product by 31P NMR spectroscopy showed that it was in a bridging position between the alpha- and beta-phosphorus atoms. This indicates that the EcoRV hydrolysis proceeds with inversion of configuration at phosphorus. The simplest interpretation is that the mechanism of this endonuclease involves a direct in-line attack at phosphorus by H2O with a trigonal bipyramidal transition state. A covalent enzyme oligodeoxynucleotide species can be discounted as an intermediate. An identical result has been previously observed with the EcoR1 endonuclease [Connolly, B. A., Eckstein, F., & Pingoud, A. (1984) J. Biol. Chem. 259, 10760-10763]. X-ray crystallography has shown that both of these endonucleases contain a conserved array of amino acids at their active sites. Possible mechanistic roles for these conserved amino acids in the light of the stereochemical findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号