首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Crabos  I W Wainer  J F Cloix 《FEBS letters》1984,176(1):223-228
This study was undertaken to assess endogenous Na+,K+-ATPase inhibitors in both plasma and urine in the same subjects. Samples were chromatographed on reverse-phase HPLC using an acetonitrile gradient and the eluent screened using Na+,K+-ATPase inhibition and cross-reaction with anti-digoxin antibodies. The donors were divided into inhibiting and non-inhibiting subjects using a previously described method, plasma action on ouabain binding and on Na+,K+-ATPase activity. Three Na+,K+-ATPase inhibitors (1P, 2P and 3P) were detectable in plasma; the antibodies cross-reaction of the peaks 2P and 3P were larger than that of peak 1P. The peaks 2P and 3P were significantly higher in inhibiting subjects as compared to non-inhibiting subjects. The 24-h urine is resolved into two peaks inhibiting Na+,K+-ATPase activity (1U and 2U). Peak 2U cross-reacted with anti-digoxin antibodies to a greater extent than peak 1U and is significantly larger in inhibiting subjects in terms of Na+,K+-ATPase inhibition. These data support the heterogeneity of human Na+,K+-ATPase inhibitor in both plasma and urine.  相似文献   

2.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

3.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

4.
Na+, K+-ATPase inhibitors possessing inhibitory activities against the specific binding of ouabain to Na+, K+-ATPase and 86Rb uptake into hog erythrocytes have been purified from the plasma of acutely saline-infused hog. The purifications were performed by a combination of Amberlite XAD-2 adsorption chromatography and four steps of high-performance liquid chromatography with four different types of columns. Fast atom bombardment (FAB) mass and proton NMR spectrometric studies identified the purified substances as gamma-arachidoyl- [LPCA(gamma), 34%], beta-arachidoyl- [LPCA(beta), 4%], gamma-linoleoyl- (LPCL, 33%), and gamma-oleoyl- (LPCO, 25%) lysophosphatidylcholine, expressed in molar ratio in the plasma. Small amounts of gamma-docosapentaenoyl-, gamma-eicosatrienoyl-, and gamma-palmitoyllysophosphatidylcholine were also detected by both FAB mass and 1H NMR spectrometric studies. Only gamma-acyl-LPC's showed inhibitory activities on Na+,K+-ATPase and ouabain-binding activities. These LPC's were effective at 100 microM levels in attaining 50% inhibition of the enzyme activity. The inhibition of Na+,K+-ATPase activity due to these compounds was always more sensitive than that of both ouabain-binding and 86Rb uptake activities. The ouabain-displacing activity in plasma due to these compounds increased with time during saline infusion. The maximal plasma level was approximately 10 times higher than that in the preinfusion plasma sample. Although these results suggest the gamma-acyl-LPC's with long-chain polyunsaturated fatty acids are not simple competitive inhibitors to Na+, K+ -ATPase, these compounds could be implicated in the pathogenesis of the circulation abnormality through the modulation of membrane enzyme.  相似文献   

5.
A Na+-pump inhibitor was purified from 140 liters of human urine to an apparent homogeneity. Tracing of the inhibitor during the different steps of purification was achieved by simultaneous determination of its capacity to inhibit the activity of Na+,K+-ATPase and ouabain binding, and to cross-react with antidigoxin antibodies. The final purification achieved a 400,000 fold. The purification steps included flash chromatography, anionic exchange chromatography, and reversed-phase HPLC on RP18, diphenyl and phenyl packings. NMR studies indicated that the final product was a non-peptidic, possibly steroidal compound. Its molecular weight as determined by mass spectrometry was 431.  相似文献   

6.
The role of an endogenous inhibitor of Na+,K+-ATPase in hypertension observed in one-kidney NaCl-loaded rats treated with deoxycorticosterone (DOC) was examined. Ouabain or digitoxin, an exogenous inhibitor of Na+,K+-ATPase, failed to cause hypertension in one-kidney NaCl-loaded rats without DOC treatment or one-kidney DOC-treated rats without NaCl loading. Moreover, neither ouabain nor digitoxin acted additively with a putative endogenous inhibitor of Na+,K+-ATPase to augment hypertension observed in one-kidney NaCl-loaded rats treated with DOC. The results do not support the hypothesis that an endogenous inhibitor of Na+,K+-ATPase plays an important role in the development or maintenance of hypertension in this animal model.  相似文献   

7.
M Tamura  T T Lam  T Inagami 《Biochemistry》1988,27(12):4244-4253
In order to identify a specific endogenous Na+,K+-ATPase inhibitor which could possibly be related to salt-dependent hypertension, we looked for substances in the methanol extract of bovine whole adrenal which show all of the following properties: (i) inhibitory activity for Na+,K+-ATPase; (ii) competitive displacing activity against [3H]ouabain binding to the enzyme; (iii) inhibitory activity for 86Rb uptake into intact human erythrocytes; and (iv) cross-reactivity with sheep anti-digoxin-specific antibody. After stepwise fractionation of the methanol extract of bovine adrenal glands by chromatography on a C18 open column, a 0-15% acetonitrile fraction was fractionated by high-performance liquid chromatography on a Zorbax octadecylsilane column. One of the most active fractions in 0-15% acetonitrile was found to exhibit all of the four types of the activities. It was soluble in water and was distinct from various substances which have been known to inhibit Na+,K+-ATPase such as unsaturated free fatty acids, lysophosphatidylcholines, vanadate, dihydroxyeicosatrienoic acid, dehydroepiandrosterone sulfate, dopamine, lignan, ascorbic acid, etc. This substance was further purified by using an additional five steps of high-performance liquid chromatography with five different types of columns. Molecular mass was estimated as below 350 by fast atom bombardment mass spectroscopy and ultrafiltration. Heat treatment at 250 degrees C for 2 h and acid treatment with 6 N HCl at 115 degrees C for 21 h almost completely destroyed the inhibitory activity of the purified substance for Na+ pump activity. Additionally, alkaline treatment with 0.2 N NaOH at 23 degrees C for 2 h destroyed approximately 70% of the inhibitory activity, whereas boiling for 10 min and various enzyme digestion did not destroy the activity. The dose dependency for the four types of the activities for this substance paralleled those of ouabain, spanning 2 orders of magnitude in concentration range. The inhibitory potencies of the purified substance for Na+,K+-ATPase, Na+ pump, and ouabain binding activities were diminished with increasing K+ concentration, exhibiting a characteristic typical of cardiac glycosides. This substance had no effect on the Ca2+-ATPase activity or the Ca2+ loading rate into the vesicle prepared from skeletal muscle sarcoplasmic reticulum. These results strongly suggest that this water-soluble nonpeptidic Na+,K+-ATPase inhibitor may be a specific endogenous regulator for the ATPase.  相似文献   

8.
Na+,K+-ATPase inhibitors have been found to exist in acutely saline-infused hog plasma, which also inhibit the specific binding of ouabain to Na+,K+-ATPase and the binding of digoxin to specific anti-digoxin antibody. Two of these inhibitors were purified by a combination of Amberlite XAD-2 adsorption chromatography and 3 steps of high-performance liquid chromatography. Reverse phase, high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry identified these substances as linoleic (18:2) and oleic acids (18:1). A significant increase in the ouabain-displacing activity was observed in hog plasma during saline infusion. The maximal level reached was approximately 10 times higher than that of the preinfusion plasma sample. The two unsaturated fatty acids contributed to approximately 52% of the total ouabain-displacing activity after 120 min of saline infusion. The increased fatty acid levels in volume-expanded plasma are sufficient for an extensive inhibition of Na+,K+-ATPase activity. These results strongly suggest that free unsaturated fatty acids in plasma regulate extracellular fluid volume in a pathological volume-expanded condition through modulation of Na+,K+-ATPase activity.  相似文献   

9.
HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.  相似文献   

10.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

11.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

12.
Using ouabain sensitive 86Rb uptake by the vessel wall, we previously showed that sodium-potassium pump activity is decreased in the arteries and veins, and that the sodium-potassium pump inhibitor (SPI) is increased in the plasma of dogs with one-kidney, one wrap (1-K, 1W) hypertension, a low renin model of hypertension. We also showed in rats with a similar type of hypertension that the membrane potential of vascular smooth muscle cells in arteries is decreased, and that this decrease can be reproduced in arterial cells in arteries from normal rats by applying plasma from the hypertensive animals. One endogenous SPI in human plasma has been reported to be ouabain or its isomer. In this study, we used a newly available Dupont ouabain enzyme immunoassay kit to examine plasma and kidneys for SPI in dogs with 1-K, 1W hypertension. We also examined 1) the inhibiting activity of plasma of Na+, K(+)-ATPase obtained from normal kidneys, and 2) the Na+, K(+)-ATPase activity of the kidneys from these hypertensive animals. 1-K, 1W hypertension was produced in dogs by wrapping the left kidney in a silk bag and removing the right kidney. The removed kidney was kept at -70 degrees C till assayed. After 4 weeks of hypertension, the remaining kidney was removed and stored at -70 degrees C till assayed. Blood samples were drawn before and at weeks 3 and 4 of hypertension. Plasma levels of "ouabain" and Na+, K(+)-ATPase inhibitory activity were increased at weeks 3 and 4 of hypertension, compared to pre-hypertension levels. Renal tissue "ouabain" levels were also increased at week 4 of hypertension. However, renal Na+, K(+)-ATPase activity was unchanged. These findings, using two different assays, confirm our 1980 conclusion that SPI is elevated in the plasma of dogs with 1-K, 1W hypertension. The absence of renal Na+, K(+)-ATPase inhibition, despite increased plasma and renal SPI in these animals, may have important implications for the development of this type of hypertension.  相似文献   

13.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

14.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

15.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

16.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

17.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

18.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

19.
These in vitro studies of golden hamster sperm were undertaken to determine whether: Na+, K+-adenosine triphosphatase (ATPase) activity is required for capacitation; Na+, K+-ATPase activity is altered during capacitation; and cyclic nucleotides can control this enzyme activity. Hamster sperm were incubated in a medium in which capacitation occurred in an asynchronous manner and in which acrosome reactions began to occur after approximately 3.5 h of incubation. Inhibition of the hamster sperm acrosome reaction by the Na+, K+-ATPase inhibitor ouabain (1 microM) added at Time (T) = 2 or T = 3 h could be fully reversed by the addition of the ionophore nigericin (0.1 microM) at T = 3.5 h. However, when ouabain was added at T = 0 or T = 1 h, similar nigericin addition could not completely reverse the inhibition. Na+, K+-ATPase activity of hamster sperm increased by 2 h of incubation (compared to that measured initially after 15 min) and this activity remained elevated at 3.5 h. Addition of either monobutyryl cyclic adenosine 3':5'-monophosphate ( BtcAMP ) (12.9 microM) or monobutyryl cyclic guanosine monophosphate ( BtcGMP ) (10.5 microM), or the phosphodiesterase inhibitor SQ20009 (10 microM) at 2 h produced a stimulation of acrosome reactions at 4 and 5 h. However, while BtcGMP and SQ 20009 also induced a further increase in Na+, K+-ATPase activity measured at 3.5 h, BtcAMP had no effect. Intracellular cAMP and cGMP levels measured showed cAMP increased by 2 h and remained elevated when measured at 3.5 h, while cGMP could not be consistently detected at 15 min, 2 h or 3.5 h. However, assays of high numbers of uncapacitated sperm did detect a low level of cGMP. These results suggest that Na+, K+-ATPase activity increases in and is essential for early capacitation [and thereby eventually for the acrosome reaction (AR)] of hamster sperm and that the increase in Na+, K+-ATPase activity occurring during capacitation is probably mediated by intracellular cGMP but not cAMP, although both cyclic nucleotides stimulate the hamster sperm AR.  相似文献   

20.
Microsomal Na+,K+-ATPase isolated from the renal cortex of rats with CCL4-induced cirrhosis (CIR) showed a higher specific activity than the enzyme obtained from control rats (COR). Kinetic studies showed a lower K0.5 for ATP (0.08 +/- 0.03 vs. 0.24 +/- 0.04 mM; p less than 0.05), a lower Na+ activation constant (9.6 +/- 1.5 vs. 19.0 +/- 1.7 mM; p less than 0.05), and a higher K+ activation constant (1.2 +/- 0.1 vs. 0.6 +/- 0.1 mM; p less than 0.05) for CIR. The optimal pH of the enzyme was 0.5 units higher in CIR than COR. The fluorescence of eosin-treated enzymes indicated a higher ratio of E1/E2 forms of Na+,K+-ATPase in CIR. The K+-activated p-nitrophenylphosphatase (pNPPase) activity of the enzyme was lower in CIR than COR rats (1.5 +/- 0.1 vs. 2.2 +/- 0.1 mU/mg; p less than 0.05). Dialysing (24 h) COR microsomes reproduced most of the changes observed in CIR enzymes (kinetics, optimal pH, and eosin fluorescence). Lyophilized dialysate of COR, but not of CIR microsomes, inhibits Na+,K+-ATPase activity. These results suggest that a dialysable inhibitor modifies the Na+,K+-ATPase activity in the kidney of COR which is almost absent in that of CIR. The absence of this factor may lead to the overall inability to excrete Na+ in the cirrhotic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号