首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-amyloid (Aβ) is the primary protein component of senile plaques in Alzheimer's disease and is believed to be associated with neurotoxicity in the disease. We and others have shown that Aβ binds with relatively high affinity to clustered sialic acid residues on cell surfaces and that removal of cell surface sialic acids attenuate Aβ toxicity. In the current work, we have prepared sialic acid conjugated dendrimeric polymers and assessed the ability of these sialic acid conjugated dendrimers to prevent Aβ toxicity. Flow cytometry was used to analyze viability of SH-SY5Y neuroblastoma cells and the effects of soluble and clustered sialic acid mimics on Aβ cell toxicity. Soluble sialic acid attenuation of Aβ induced toxicity was effective only at high sialic acid concentrations and low Aβ concentration. The sialic acid conjugated dendrimeric polymers were able to attenuate Aβ toxicity at micromolar concentrations, or approximately three orders of magnitude lower concentrations than the soluble sialic acid. The toxicity prevention properties of the sialic acid modified dendrimers were a function of dendrimer size. This work may lead to the development of new classes of therapeutics for the prevention of Aβ toxicity.  相似文献   

2.
beta-Amyloid (Abeta) is the primary protein component of senile plaques associated with Alzheimer's disease and has been implicated in the neurotoxicity associated with the disease. A variety of evidence points to the importance of Abeta-membrane interactions in the mechanism of Abeta neurotoxicity and indicates that cholesterol and gangliosides are particularly important for Abeta aggregation and binding to membranes. We investigated the effects of cholesterol and sialic acid depletion on Abeta-induced GTPase activity in cells, a step implicated in the mechanism of Abeta toxicity, and Abeta-induced cell toxicity. Cholesterol reduction and depletion of membrane-associated sialic acid residues both significantly reduced the Abeta-induced GTPase activity. In addition, cholesterol and membrane-associated sialic acid residue depletion or inhibition of cholesterol and ganglioside synthesis protected PC12 cells from Abeta-induced toxicity. These results indicate the importance of Abeta-membrane interactions in the mechanism of Abeta toxicity. In addition, these results suggest that control of cellular cholesterol and/or ganglioside content may prove useful in the prevention or treatment of Alzheimer's disease.  相似文献   

3.
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer's disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with AD.  相似文献   

4.
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.  相似文献   

5.
Conventional dendrimers are spherical symmetrically branched polymers ending with active surface functional groups. Polyamidoamine (PAMAM) dendrimers have been widely studied as gene delivery vectors and have proven effective at delivering DNA to cells in vitro. However, higher‐generation (G4‐G8) PAMAM dendrimers exhibit toxicity due to their high cationic charge density and this has limited their application in vitro and in vivo. Another limitation arises when attempts are made to functionalize spherical dendrimers as targeting moieties cannot be site‐specifically attached. Therefore, we propose that lower‐generation asymmetric dendrimers, which are likely devoid of toxicity and to which site‐specific attachment of targeting ligands can be achieved, would be a viable alternative to currently available dendrimers. We synthesized and characterized a series of peptide‐based asymmetric dendrimers and compared their toxicity profile and ability to condense DNA to spherical PAMAM G1 dendrimers. We show that asymmetric dendrimers are minimally toxic and condense DNA into stable toroids which have been reported necessary for efficient cell transfection. This paves the way for these systems to be conjugated with targeting ligands for gene delivery in vitro and in vivo. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Enrichment of diet and culture media with the polyunsaturated fatty acid docosahexaenoic acid has been found to reduce the amyloid burden in mice and lower amyloid-beta (Abeta) levels in both mice and cultured cells. However, the direct interaction of polyunsaturated fatty acids, such as docosahexaenoic acid, with Abeta, and their effect on Abeta aggregation has not been explored in detail. Therefore, we have investigated the effect of docosahexaenoic acid, arachidonic acid and the saturated fatty acid arachidic acid on monomer oligomerization into protofibrils and protofibril fibrillization into fibrils in vitro, using size exclusion chromatography. The polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid at micellar concentrations stabilized soluble Abeta42 wild-type protofibrils, thereby hindering their conversion to insoluble fibrils. As a consequence, docosahexaenoic acid sustained amyloid-beta-induced toxicity in PC12 cells over time, whereas Abeta without docosahexaenoic acid stabilization resulted in reduced toxicity, as Abeta formed fibrils. Arachidic acid had no effect on Abeta aggregation, and neither of the fatty acids had any protofibril-stabilizing effect on Abeta42 harboring the Arctic mutation (AbetaE22G). Consequently, AbetaArctic-induced toxicity could not be sustained using docosahexaenoic acid. These results provide new insights into the toxicity of different Abeta aggregates and how endogenous lipids can affect Abeta aggregation.  相似文献   

7.
beta-Amyloid peptide (Abeta) is the major constituent of senile plaques, the key pathological feature of Alzheimer's disease. Abeta is physiologically produced as a soluble form, but aggregation of Abeta monomers into oligomers/fibrils causes neurotoxic change of the peptide. In nature, many microorganisms accumulate small molecule chaperones (SMCs) under stressful conditions to prevent the misfolding/denaturation of proteins and to maintain their stability. Hence, it is conceivable that SMCs such as ectoine and hydroxyectoine could be potential inhibitors against the aggregate formation of Alzheimer's Abeta, which has not been studied to date. The current work shows the effectiveness of ectoine and hydroxyectoine on the inhibition of Abeta42 aggregation and toxicity to human neuroblastoma cells. The characterization tools used for this study include thioflavin-T induced fluorescence, atomic force microscopy and cell viability assay. Considering that ectoine and hydroxyectoine are not toxic to cellular environment even at concentrations as high as 100 mM, the results may suggest a basis for the development of ectoines as potential inhibitors associated with neurodegenerative diseases.  相似文献   

8.
Intracellular porphyrin generation following administration of 5-aminolaevulinic acid has been widely used in photodynamic therapy for a range of malignant and certain non-malignant lesions. However, cellular uptake of 5-aminolaevulinic acid is limited by its hydrophilic nature and improved means of delivery are therefore being sought. Highly branched polymeric drug carriers known as dendrimers are a promising new approach to drug delivery. The aim of this study was to investigate the efficacy of dendrimers conjugated with 5-aminolaevulinic acid for porphyrin production in the transformed PAM 212 keratinocyte cell line and skin explants. Each dendritic derivative incorporated three 5-aminolaevulinic acid residues which were conjugated as esters via methyl or propyl linkers to a central tertiary carbon whose remaining terminal bore an amino, aminobenzyloxycarbonyl or nitro group. In the cell line, all compounds were more efficient at low concentrations compared to equimolar 5-aminolaevulinic acid for porphyrin production, with the most efficient incorporating the longer propyl linker. This compound was also the most lipophilic according to partition coefficient measurements. The intracellular porphyrin fluorescence levels showed good correlation with cellular phototoxicity following light exposure for all the compounds, together with minimal dark toxicity. Our findings indicate that the key factors influencing the efficacy of the dendritic derivatives are lipophilicity and steric hindrance within the dendritic structure which could restrict access to intracellular esterases for liberation of 5-aminolaevulinic acid. These findings should be taken into account in the design of larger dendrimers of 5-aminolaevulinic acid.  相似文献   

9.
beta-Amyloid (Abeta) is the primary protein component of senile plaques in Alzheimer's disease (AD) and has been implicated in neurotoxicity associated with the disease. Abeta aggregates readily in vitro and in vivo, and its toxicity has been linked to its aggregation state. Prevention of Abeta aggregation has been investigated as a means to prevent Abeta toxicity associated with AD. Recently we found that Hsp20 from Babesia bovis prevented both Abeta aggregation and toxicity [S. Lee, K. Carson, A. Rice-Ficht, T. Good, Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity, Protein Sci. 14 (2005) 593-601.]. In this work, we examined the mechanism of Hsp20 interaction with Abeta1-40 and compared its activity to that of other small heat shock proteins, carrot Hsp17.7 and human Hsp27. While all three small heat shock proteins were able to prevent Abeta aggregation, only Hsp20 was able to attenuate Abeta toxicity in cultured SH-SY5Y cells. Understanding the mechanism of the Hsp20-Abeta interaction may provide insights into the design of the next generation of Abeta aggregation and toxicity inhibitors.  相似文献   

10.
Nourse A  Millar DB  Minton AP 《Biopolymers》2000,53(4):316-328
The dispersity, size, and self-interaction of generation 5 polyamidoamine dendrimeric polymers with different terminal groups (surfaces) were characterized using several physicochemical techniques. Amino-surface dendrimers form oligomeric aggregates in aqueous solution, even in the presence of high salt concentrations (0.6M sodium phosphate). In contrast, the hydroxyl-surface polymer G5-OH behaves as a single homogeneous (or paucidisperse) species at low concentration. Measurements of density increment and the sedimentation and diffusion coefficients of G5-OH suggest a more swollen, porous structure than a globular protein of comparable mass. Measurements of the concentration dependence of sedimentation equilibrium of G5-OH in pH 7.2 phosphate buffer indicate the presence of significant electrostatic repulsion overlaid on weakly attractive interactions, leading to the formation of nonspecific aggregates at sufficiently high dendrimer concentration.  相似文献   

11.
Pyridoxal was covalently attached to polyethylenimine polymers, but the resulting materials were found to degrade rapidly. In comparison, the dendrimeric pyridoxals, which possess only one pyridoxal unit at the core of every dendrimer molecule were found to be relatively stable compounds. A total of 12 poly(amidoamine) type dendrimers were synthesized. They range from G1 to G6 with either NMe(2) or NHAc termini. The NMe(2)-terminated pyridoxal dendrimers racemize alpha-amino acids 50-100 times faster than does simple pyridoxal, while the NHAc-terminated pyridoxal dendrimers racemize alpha-amino acids only 3-5 times faster than does simple pyridoxal. Both the NMe(2)- and NHAc-terminated pyridoxal dendrimers decarboxylate 2-amino-2-phenyl-propionic acid 1-3 times faster than simple pyridoxal. The interior polarity in the pyridoxal dendrimers is similar to that of 85:15 water-DMF solution. Furthermore, we successfully incorporated eight lauryl groups to the G5 pyridoxal dendrimer at known positions. The laurylated dendrimer exhibits lower racemization and decarboxylation rates than do the unlaurylated ones, in contrast to the positive rate effects of laurylation in polyethylenimine-pyridoxamines in our previous transamination studies.  相似文献   

12.
A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Abeta oligomers. DHA pre-treatment was observed to significantly increase neuronal survival upon Abeta treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal-related kinase (ERK)-related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Abeta oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.  相似文献   

13.
Antimicrobial dendrimeric peptides.   总被引:2,自引:0,他引:2  
Dendrimeric peptides selective for microbial surfaces have been developed to achieve broad antimicrobial activity and low hemolytic activity to human erythrocytes. The dendrimeric core is an asymmetric lysine branching tethered with two to eight copies of a tetrapeptide (R4) or an octapeptide (R8). The R4 tetrapeptide (RLYR) contains a putative microbial surface recognition BHHB motif (B = basic, H = hydrophobic amino acid) found in protegrins and tachyplesins whereas the octapeptide R8 (RLYRKVYG) consists of an R4 and a degenerated R4 repeat. Antimicrobial assays against 10 organisms in high- and low-salt conditions showed that the R4 and R8 monomers as well as their divalent dendrimers contain no to low activity. In contrast, the tetra- and octavalent R4 and R8 dendrimers are broadly active under either conditions, exhibiting relatively similar potency with minimal inhibition concentrations < 1 microm against both bacteria and fungi. Based on their size and charge similarities, the potency and activity spectrum of the tetravalent R4 dendrimer are comparable to protegrins and tachyplesins, a family of potent antimicrobials containing 17-19 residues. Compared with a series of linearly repeating R4 peptides, the R4 dendrimers show comparable antimicrobial potency, but are more aqueous soluble, more stable to proteolysis, less toxic to human cells and more easily synthesized chemically. These results suggest repeating peptides that cluster the charge and hydrophobic residues may represent a primitive form of microbial pattern-recognition. Incorporating such knowledge in a dendrimeric design therefore presents an attractive approach for developing novel peptide antibiotics.  相似文献   

14.
In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1-42 (Abeta(1-42)) solutions (mixtures of Abeta monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non-fibrillar forms of Abeta. It is now known that Abeta toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Abeta(1-42) oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Abeta(1-42) solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Abeta in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell-attached oligomers to receptor-like puncta, and for immunoblots that show the presence of SDS-stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno-neutralization of soluble Abeta-derived toxins. Analogous immuno-neutralization of oligomers in humans may be a key in AD vaccines.  相似文献   

15.
Chi EY  Frey SL  Lee KY 《Biochemistry》2007,46(7):1913-1924
There is increasing evidence that a class of cell membrane glycolipids, gangliosides, can mediate the fibrillogenesis and toxicity of Alzheimer's disease amyloid-beta peptide (Abeta). Using lipid monolayers and vesicles as model membranes, we measured the insertion of Abeta into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-ganglioside GM1 monolayers to probe Abeta-GM1 interactions, imaged the effects of Abeta insertion on monolayer morphology, and measured the rate of Abeta fibril formation when incubated with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-GM1 vesicles. Furthermore, the location of Abeta association in the monolayer was assessed by dual-probe fluorescence experiments. Abeta exhibited direct and favorable interactions with GM1 as Abeta insertion monotonically increased with GM1 concentration, despite increases in monolayer rigidity at low GM1 levels. At low GM1 concentrations, Abeta preferentially inserted into the disordered, liquid expanded phase. At higher GM1 concentrations, Abeta inserted more uniformly into the monolayer, resulting in no detectable preferences for either the disordered or condensed phase. Abeta insertion led to the disruption of membrane morphology, specifically to the expansion of the disordered phase at low GM1 concentrations and significant disruption of the condensed domains at higher GM1 concentrations. During incubation with POPC vesicles containing physiological levels of GM1, the association of Abeta with vesicles seeded the formation of Abeta fibrils. In conclusion, favorable interactions between Abeta and GM1 in the cell membrane may provide a mechanism for Abeta fibrillogenesis in vivo, and Abeta-induced disruption of the cell membrane may provide a pathway by which Abeta exerts toxicity.  相似文献   

16.
《FEBS letters》1997,413(2):202-204
The role of oxidatively modified LDL in the pathogenesis of atherosclerosis has been well documented. These studies have focused on modifications of lipid and protein parts of LDL. Recently desialylated LDL has received attention in relation to atherosclerosis and coronary artery disease. We examined the possible involvement of radical reactions in desialylation of LDL. Human LDL was subjected to oxidative damage using Cu2+ ion. As the conjugated dienes monitored by absorption at 234 nm increased, the content of sialic acid decreased steadily. Both the elevation of conjugated diene and the decrease of sialic acid were inhibited by β-mercaptoethanol, a typical radical scavenger. Besides, both butylated hydroxytoluene and a nitrogen atmosphere inhibited the decrease of sialic acid. These inhibition experiments suggested that sialic acid moieties in LDL were reactive toward radicals.  相似文献   

17.
Alzheimer's disease (AD) is characterized by the presence of large numbers of fibrillar amyloid deposits in the form of senile plaques in the brain. The fibrils in senile plaques are composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the pathogenesis of AD, and many laboratories have investigated soluble Abeta aggregates generated from monomeric Abeta in vitro. Of these in vitro aggregates, the best characterized are called protofibrils. They are composed of globules and short rods, show primarily beta-structure by circular dichroism (CD), enhance the fluorescence of bound thioflavin T, and readily seed the growth of long fibrils. However, one difficulty in correlating soluble Abeta aggregates formed in vitro with those in vivo is the high probability that cellular interfaces affect the aggregation rates and even the aggregate structures. Reports that focus on the features of interfaces that are important in Abeta aggregation have found that amphiphilic interactions and micellar-like Abeta structures may play a role. We previously described the formation of Abeta(1-40) aggregates at polar-nonpolar interfaces, including those generated at microdroplets formed in dilute hexafluoro-2-propanol (HFIP). Here we compared the Abeta(1-40) aggregates produced on sodium dodecyl sulfate (SDS) micelles, which may be a better model of biological membranes with phospholipids that have anionic headgroups. At both HFIP and SDS interfaces, changes in peptide secondary structure were observed by CD immediately when Abeta(1-40) was introduced. With HFIP, the change involved an increase in predominant beta-structure content and in fluorescence with thioflavin T, while with SDS, a partial alpha-helical conformation was adopted that gave no fluorescence. However, in both systems, initial amorphous clustered aggregates progressed to soluble fibers rich in beta-structure over a roughly 2 day period. Fiber formation was much faster than in the absence of an interface, presumably because of the close intermolecular proximity of peptides at the interfaces. While these fibers resembled protofibrils, they failed to seed the aggregation of Abeta(1-40) monomers effectively.  相似文献   

18.
Polyether dendritic compounds bearing folate residues on their surface were prepared as model drug carriers with potential tumor cell specificity. Starting from ester-terminated polyether dendrimers, hydrazide groups were easily introduced to the surface of the dendrimers by reaction with hydrazine. Folate residues were then conjugated to the hydrazide chain ends of the dendrimers by direct condensation with folic acid in the presence of a condensing agent or by reaction with an active ester derivative of folic acid. Essentially complete functionalization of the terminal hydrazide groups was achieved for both the first and the second generation dendrimers with four and eight hydrazide groups. For the G-2 dendrimer with 16 hydrazide groups, an average number of only 12.6 folate residues were attached to each dendrimer. The conjugates are soluble in aqueous medium above pH 7.4. In addition, a similar conjugation of the antitumor drug methotrexate to the dendrimer was also investigated. Once optimized, these molecules may form the basis for a novel family of multivalent drug carriers.  相似文献   

19.
Accumulation of the beta-amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism of Abeta toxicity remains unclear. Abeta can bind to the extracellular matrix, a structure that regulates adhesive events such as neurite outgrowth and synaptogenesis. The binding of Abeta to the extracellular matrix suggests that Abeta may disrupt cell-substrate interactions. Therefore, the effect of substrate-bound Abeta on the growth of isolated chick sympathetic and mouse cortical neurons was examined. Abeta1-40 and Abeta1-42 had dose-dependent effects on cell morphology. When tissue culture plates were coated with 0.1-10 ng/well Abeta, neurite outgrowth increased. Higher amounts of Abeta peptides (> or =3 microg/well) inhibited outgrowth. The inhibitory effect was related to aggregation of the peptide, as preincubation of Abeta1-40 for 24 h at 37 degrees C (a process known to increase amyloid fibril formation) was necessary for inhibition of neurite outgrowth. Abeta29-42, but not Abeta1-28, also inhibited neurite outgrowth at high concentrations, demonstrating that the inhibitory domain is located within the hydrophobic C-terminal region. Abeta1-40, Abeta1-42, and Abeta29-42 also inhibited cell-substrate adhesion, indicating that the effect on neurite outgrowth may have been due to inhibition of cell adhesion. The results suggest that accumulation of Abeta may disrupt cell-adhesion mechanisms in vivo.  相似文献   

20.
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号