首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa.  相似文献   

2.
Inositol 1,4,5-trisphosphate 3-kinase (IP(3)-3K) catalyses the phosphorylation of inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three mammalian isoforms have been reported and referred to as IP(3)-3KA, IP(3)-3KB, and IP(3)-3KC. IP(3)-3KB is particularly sensitive to proteolysis at the N-terminus, a mechanism known to generate active fragments of lower molecular mass. Endogenous IP(3)-3KB has therefore not been formally identified in tissues. We have probed a series of murine tissues with an antibody directed against the C-terminus of IP(3)-3KB and used IP(3)-3KB deficient mouse tissues as negative controls. IP(3)-3KB was shown to be particularly well expressed in brain, lung, and thymus with molecular masses of 110-120kDa. The identification of the native IP(3)-3KB by Western blotting for the first time will facilitate further studies of regulation of its activity by specific proteases and/or phosphorylation.  相似文献   

3.
IRBIT has previously been shown to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) in an IP3-sensitive way. So far it remained to be elucidated whether this interaction was direct or indirect, and whether it was functionally relevant. We now show that IRBIT can directly interact with the IP3R, and that both the suppressor domain and the IP3-binding core of the IP3R are essential for a strong interaction. Moreover, we identified a PEST motif and a PDZ-ligand on IRBIT which were critical for the interaction with the IP3R. Furthermore, we identified Asp-73 as a critical residue for this interaction. Finally, we demonstrated that this interaction functionally affects the IP3R: IRBIT inhibits both IP3 binding and IP3-induced Ca2+ release.  相似文献   

4.
Huh YH  Yoo JA  Bahk SJ  Yoo SH 《FEBS letters》2005,579(12):2597-2603
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.  相似文献   

5.
Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain.  相似文献   

6.
The mechanisms of agonist-induced Ca(2+) spikes have been investigated using a caged inositol 1,4,5-trisphosphate (IP(3)) and a low-affinity Ca(2+) indicator, BTC, in pancreatic acinar cells. Rapid photolysis of caged IP(3) was able to reproduce acetylcholine (ACh)-induced three forms of Ca(2+) spikes: local Ca(2+) spikes and submicromolar (<1 microM) and micromolar (1-15 microM) global Ca(2+) spikes (Ca(2+) waves). These observations indicate that subcellular gradients of IP(3) sensitivity underlie all forms of ACh-induced Ca(2+) spikes, and that the amplitude and extent of Ca(2+) spikes are determined by the concentration of IP(3). IP(3)-induced local Ca(2+) spikes exhibited similar time courses to those generated by ACh, supporting a role for Ca(2+)-induced Ca(2+) release in local Ca(2+) spikes. In contrast, IP(3)- induced global Ca(2+) spikes were consistently faster than those evoked with ACh at all concentrations of IP(3) and ACh, suggesting that production of IP(3) via phospholipase C was slow and limited the spread of the Ca(2+) spikes. Indeed, gradual photolysis of caged IP(3) reproduced ACh-induced slow Ca(2+) spikes. Thus, local and global Ca(2+) spikes involve distinct mechanisms, and the kinetics of global Ca(2+) spikes depends on that of IP(3) production particularly in those cells such as acinar cells where heterogeneity in IP(3) sensitivity plays critical role.  相似文献   

7.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

8.
Ca2+ signaling via the inositol 1,4,5-trisphosphate receptor (InsP3R) is a ubiquitous mechanism for regulation of cell function, yet very little is known about the role of the InsP3R in specific disease states. Converging lines of evidence suggest that the liver may provide a model for the role of the InsP3R in health and disease. Ca2+ signaling is mediated entirely by the InsP3R in hepatocytes and cholangiocytes, the two types of epithelia in the liver. Here we review the role of specific InsP3R isoforms and the physiological effects of InsP3R-mediated Ca2+ signals in both of these types of epithelia. In addition, we review evidence that the InsP3R is lost from cholangiocytes in cholestatic forms of liver disease, and discuss this as a possible final common pathway for cholestasis.  相似文献   

9.
OX1 orexin receptors (OX1R) have been shown to activate receptor-operated Ca2+ influx pathways as their primary signalling pathway; however, investigations are hampered by the fact that orexin receptors also couple to phospholipase C, and therewith inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ release. We have here devised a method to block the latter signalling in order to focus on the mechanism of Ca2+ influx activation by OX1R in recombinant systems. Transient expression of the IP3-metabolising enzymes IP3-3-kinase-A (inositol-1,4,5-trisphosphate-->inositol-1,3,4,5-tetrakisphosphate) and type I IP3-5-phosphatase (inositol-1,4,5-trisphosphate-->inositol-1,4-bisphosphate) almost completely attenuated the OX1R-stimulated IP3 elevation and Ca2+ release from intracellular stores. Upon attenuation of the IP3-dependent signalling, the receptor-operated Ca2+ influx pathway became the only source for Ca2+ elevation, enabling mechanistic studies on the receptor-channel coupling. Attenuation of the IP3 elevation did not affect the OX1R-mediated ERK (extracellular signal-regulated kinase) activation in CHO cells, which supports our previous finding of the major importance of receptor-operated Ca2+ influx for this response.  相似文献   

10.
Huh YH  Yoo SH 《FEBS letters》2003,555(2):411-418
Although the inositol 1,4,5-triphosphate (IP(3))-induced nuclear Ca(2+) release has been shown to play key roles in nuclear functions, the presence of IP(3) receptor (IP(3)R)/Ca(2+) channels in the nucleoplasm has not been found. Recently, the IP(3)R/Ca(2+) channels were reported to exist in the nucleoplasmic reticulum structure, an extension of the nuclear envelope. Here we investigated the potential existence of the IP(3)Rs in the nucleoplasm and found the presence of all three IP(3)R isoforms in neuroendocrine and non-neuroendocrine cells. The IP(3)Rs were widely scattered in the nucleoplasm, localizing in both the heterochromatin and euchromatin regions.  相似文献   

11.
Ca2+ exerts both a stimulatory and inhibitory effect on type-I IP3R channel activity. However, the structural determinants of Ca2+ sensing in IP3Rs are not fully understood. Previous studies by others have identified eight domains of the type-I IP3R that bind 45Ca2+ when expressed as GST-fusion proteins. We have mutated six highly conserved acidic residues within the second of these domains (aa378-450) in the full-length IP3R and measured the Ca2+ regulation of IP3-mediated Ca2+ release in COS-7 cells. 45Ca2+ flux assays measured with a maximal [IP3] (1 microM) indicate that one of the mutants retained a Ca2+ sensitivity that was not significantly different from control (E411Q), three of the mutants show an enhanced Ca2+ inhibition (D426N, E428Q and E439Q) and two of the mutants were relatively insensitive to Ca2+ inhibition (D442N and D444N). IP3 dose-response relationships indicated that the sensitivity to Ca2+ inhibition and affinity for IP3 were correlated for three of the constructs. Other mutants with enhanced IP3 sensitivity (e.g. R441Q and a type-II/I IP3R chimera) were also less sensitive to Ca2+ inhibition. We conclude that the acidic residues within the aa378-450 segment are unlikely to represent a single functional Ca2+ binding domain and do not contribute to Ca2+ activation of the receptor. The different effects of the mutations may be related to their location within two clusters of acidic residues identified in the crystal structure of the ligand-binding domain [I. Bosanac, J.R. Alattia, T.K. Mal, et al., Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700]. The data support the view that all IP3R isoforms may display a range of Ca2+ sensitivities that are determined by multiple sites within the protein and markedly influenced by the affinity of the receptor for IP3.  相似文献   

12.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) forms ligand-regulated intracellular Ca(2+) release channels in the endoplasmic reticulum of all mammalian cells. The InsP(3)R has been suggested to have six transmembrane regions (TMRs) near its carboxyl terminus. A TMR-deletion mutation strategy was applied to define the location of the InsP(3)R pore. Mutant InsP(3)Rs were expressed in COS-1 cells and single channel function was defined in planar lipid bilayers. Mutants having the fifth and sixth TMR (and the interceding lumenal loop), but missing all other TMRs, formed channels with permeation properties similar to wild-type channels (gCs = 284; gCa = 60 pS; P(Ca)/P(Cs) = 6.3). These mutant channels bound InsP(3), but ligand occupancy did not regulate the constitutively open pore (P(o) > 0.80). We propose that a region of 191 amino acids (including the fifth and sixth TMR, residues 2398-2589) near the COOH terminus of the protein forms the InsP(3)R pore. Further, we have produced a constitutively open InsP(3)R pore mutant that is ideal for future site-directed mutagenesis studies of the structure-function relationships that define Ca(2+) permeation through the InsP(3)R channel.  相似文献   

13.
Adenine and uridine nucleotides evoke Ca(2+) signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca(2+) signals are unresolved. Cytosolic Ca(2+) signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca(2+) indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca(2+) signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca(2+) from intracellular stores via inositol 1,4,5-trisphosphate (IP(3)) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca(2+) signals were independent of the Na(+)/Ca(2+) exchanger and were probably mediated by store-operated Ca(2+) entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca(2+) signals in cultured aortic smooth muscle cells using the same intracellular (IP(3) receptors) and Ca(2+) entry pathways (store-operated Ca(2+) entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca(2+) signal evoked by each P2Y receptor subtype.  相似文献   

14.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that releases intracellular Ca(2+) by binding to its specific receptor, inositol 1,4,5-trisphosphate receptor (IP(3)R), in a wide range of cellular processes. We report here large-scale expression and purification of N-terminal 604 amino acids of IP(3)R type 1 (T604) expressed in E. coli, which contains the ligand binding domain. Surface plasmon resonance biosensor studies showed that purified T604 could bind to its ligands with binding specificity identical to that of full-length native IP(3)R type 1. Kinetic parameters of T604 for IP(3) consisted of a fast association rate constant (K(ass) = 1.2 x 10(6) M(-1) s(-1)) and a rapid dissociation rate constant (k(diss) = 1 s(-1)), and the equilibrium dissociation constant was determined to be 336 nM, at 150 mM NaCl and pH 7.4. However, association and dissociation patterns depended on the pH level and ionic strength. These results pave the way toward detail analysis of structure-function analysis of the ligand binding domain of IP(3)R type 1 for its ligands.  相似文献   

15.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

16.
Inositol 1,4,5-trisphosphate receptor-deficient (IP3RKO) B-lymphocytes were used to investigate the functional relevance of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) and its cleavage by caspase-3 in apoptosis. We showed that inositol 1,4,5-trisphosphate receptor-deficient cells were largely resistant to apoptosis induced by both staurosporine (STS) and B-cell receptor (BCR) stimulation. Expression of either the wild-type IP3R1 or an N-terminal deletion mutant (Delta1-225) that lacks inositol 1,4,5-trisphosphate-induced Ca2+ release activity restored sensitivity to apoptosis and the consequent rise in free cytosolic Ca2+ concentration ([Ca2+]i). Expression of caspase-3-non-cleavable mutant receptor, however, dramatically slowed down the rate of apoptosis and prevented both Ca2+ overload and secondary necrosis. Conversely, expression of the "channel-only" domain of IP3R1, a fragment of the receptor generated by caspase-3 cleavage, strongly increased the propensity of the cells to undergo apoptosis. In agreement with these observations, caspase inhibitors impeded apoptosis and the associated rise in [Ca2+]i. Both the staurosporine- and B-cell receptor-induced apoptosis and increase in [Ca2+]i could be induced in nominally Ca2+-free and serum-free culture media, suggesting that the apoptosis-related rise in [Ca2+]i was primarily because of the release from internal stores rather than of influx through the plasma membrane. Altogether, our results suggest that IP3R1 plays a pivotal role in apoptosis and that the increase in [Ca2+]i during apoptosis is mainly the consequence of IP3R1 cleavage by caspase-3. These observations also indicate that expression of a functional IP3R1 per se is not enough to generate the significant levels of cytosolic Ca2+ needed for the rapid execution of apoptosis, but a prior activation of caspase-3 and the resulting truncation of the IP3R1 are required.  相似文献   

17.
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.  相似文献   

18.
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1 receptor antagonist), U-73122 (a phospholipase C inhibitor), 2-APB (an inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor blocker), thapsigargin (a Ca2+-ATPase inhibitor), and BAPTA/AM (an intracellular Ca2+ chelator), but not by DMPX (an A2 receptor antagonist). However, forskolin, epinephrine, and isoproterenol, inducers of cAMP accumulation, failed to release ATP. Adenosine increased intracellular Ca2+ concentrations that were strongly blocked by CPT, U-73122, 2-APB, and thapsigargin. Moreover, adenosine enhanced accumulations of Ins(1,4,5)P3 that were significantly reduced by U-73122 and CPT. These data suggest that adenosine induces the release of ATP by activating an Ins(1,4,5)P3 sensitive-Ca2+ pathway through the stimulation of A1 receptors.  相似文献   

19.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.  相似文献   

20.
Recent observations have been made regarding the generation of inositol 1,4,5-trisphosphate (IP(3)), using chimeras of green fluorescent protein and the pleckstrin homology domain of phospholipase C-delta. In this paper a model is presented giving the quantitative relations between the green fluorescent protein-pleckstrin homology domain (GFP-PHD) construct and membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels as well as the concentration of IP(3), the product of hydrolysis of PIP(2). The model can correctly reproduce the dependence of cytosolic GFP-PHD fluorescence on IP(3) concentration. This model extends a previous one (Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation, in this issue) dealing with the processes governing the production of IP(3) and the subsequent calcium (Ca2+) changes in cells following activation of metabotropic receptors. This model is applied to the case of purinergic P(2)Y(2) receptor activation in Madin-Darby Canine Kidney (MDCK) cells with adenosine triphosphate (ATP) (Science 284 (1999) 1527). It is shown that it can correctly reproduce the dependence of GFP-PHD fluorescence on the concentration of P(2)Y(2) receptor ligand, as well as the temporal changes of GFP-PHD fluorescence following application of ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号