首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a reconstituted enzyme system multiple stationary states and oscillatory motions of the substrate cycle catalyzed by phosphofructokinase and fructose 1,6-bisphosphatase are significantly influenced by fructose 2,6-bisphosphate. Depending on the initial conditions, fructose 2,6-bisphosphate was found either to generate or to extinguish oscillatory motions between glycolytic and gluconeogenic states. In general, stable glycolytic modes are favored because of the efficient activation of phosphofructokinase by this effector. The complex effect of fructose 2,6-bisphosphate on the rate of substrate cycling correlates with its synergistic cooperation with AMP in the activation of phosphofructokinase and inhibition of fructose 1,6-bisphosphatase.  相似文献   

2.
Activities of glycolytic enzymes in the aorta were investigated in female Wistar rats. There were two groups of rats; one served as the control (sedentary rats), while the other group was forced to run on a treadmill for 10 weeks. In the control animals, the activities of hexokinase, phosphofructokinase and aldolase were relatively lower than those of the other glycolytic enzymes (phosphoglucose isomerase, lactate dehydrogenase and pyruvate kinase). After exercise, the activity of phosphofructokinase increased by 15%, whereas the other enzymatic activities were much the same as in the controls. Within the limits of the experiments, the increased percentage of phosphofructokinase was statistically significant (p less than 0.05). Since phosphofructokinase is a putative rate limiting enzyme, this enzymatic activation may indicate that glycolytic activity in the rat aorta is enhanced during and after running exercise.  相似文献   

3.
4.
Various glycolytic and gluconeogenic enzymes were tested as substrates for the insulin receptor kinase. Phosphofructokinase and phosphoglycerate mutase were found to be the best substrates. Phosphorylation of these enzymes was rapid, stimulated 2- to 6-fold by 10(-7) M insulin and occurred exclusively on tyrosine residues. Enolase, fructose 1,6-bisphosphatase, lactate dehydrogenases in decreasing order, were also subject to insulin-stimulated phosphorylation but to a smaller extent than that for phosphofructokinase or phosphoglycerate mutase. The phosphorylation of phosphofructokinase was studied most extensively since phosphofructokinase is known to catalyze a rate-limiting step in glycolysis. The apparent Km of the insulin receptor for phosphofructokinase was 0.1 microM, which is within the physiologic range of concentration of this enzyme in most cells. Tyrosine phosphorylation of phosphofructokinase paralleled autophosphorylation of the beta-subunit of the insulin receptor with respect to time course, insulin dose response (half maximal effect between 10(-9) and 10(-8) M insulin), and cation requirement (Mn2+ greater than Mg2+ much greater than Ca2+). Further study will be required to determine whether the tyrosine phosphorylation of phosphofructokinase plays a role in insulin-stimulated increases in glycolytic flux.  相似文献   

5.
The content of glycolytic intermediates and of adenine nucleotides was measured in eggs of the echiuroid, Urechis unicinctus and the oyster, Crassostrea gigas, before and after fertilization. On the whole, the profile of the change in each glycolytic intermediate in Urechis eggs upon fertilization was found to be essentially similar to that in oyster eggs. Calculation of the mass action ratio for each glycolytic step from the amounts of glycolytic intermediates determined suggests that there are at least three limiting enzymes in the glycolysis system in unfertilized and fertilized eggs of each species examined. Phosphorylase (EC 2.4.1.1), phosphofructokinase (EC 2.7.1.11), and pyruvate kinase (EC 2.7.1.40) may be rate-limiting enzymes for the glycolysis system in Urechis eggs as well as in oyster eggs. These enzymes are thought to be activated upon fertilization, though even the reactions of the enzymes in fertilized eggs do not reach a state of equilibrium. In eggs of Urechis and oyster, phosphorylase is the first enzyme to be activated following fertilization. In Urechis eggs, pyruvate kinase is activated after the instant increase in the phosphorylase activity upon fertilization, followed by phosphofructokinase activation. In oyster eggs, however, pyruvate kinase and phosphofructokinase seem to be stimulated simultaneously, subsequent to phosphorylase activation upon fertilization. The mechanism controlling phosphorylase and pyruvate kinase activity is unknown, but the phosphofructokinase activity in both species may be regulated by the intracellular concentration of adenine nucleotides, since the enzyme activity is enhanced along with a decline in the phosphate potential in the eggs of both Urechis and of oyster.  相似文献   

6.
1. Attempts were made to define the role of phosphofructokinase in glycolytic control and the factors regulating the concentration of l-glycerol 3-phosphate in rat epididymal fat pads incubated in vitro. 2. Glycolysis rates were altered by anoxia or by additions of insulin, adrenaline or both to the incubation medium, and the changes in rate were related to changes in the steady-state concentrations of hexose phosphates, adenine nucleotides, l-glycerol 3-phosphate and citrate in the whole tissue. Measurements were also made of the lactate/pyruvate concentration ratio in the medium after incubation. 3. The mass-action ratios of phosphofructokinase, calculated from the whole-tissue concentrations of products and substrates, were less than 0.1% of the value of the ratio at pH7.4 at equilibrium. 4. Only in the presence of adrenaline could the observed stimulation of glycolytic flux be related to a possible activation of phosphofructokinase since, in this situation, the concentration of one substrate, fructose 6-phosphate, was not altered and the concentration of the other, ATP, was decreased. Increased glycolytic flux in the presence of insulin may be explained by an observed increase in the concentration of the substrate, fructose 6-phosphate. Under anaerobic conditions, glycolytic flux was decreased but this did not appear to be the result of inhibition of phosphofructokinase, since the concentrations of both substrates, fructose 6-phosphate and ATP, were decreased. The changes in glycolytic flux with insulin and anoxia may be secondary to changes in the rate of glucose uptake. 5. Changes in l-glycerol 3-phosphate concentration appear to be related both to changes in the concentration of dihydroxyacetone phosphate and to changes in the NADH/NAD(+) concentration ratio in the cytoplasm. They do not seem to be related directly to alterations in glycolytic rate.  相似文献   

7.
A mitochondrial fraction prepared from calf brain cortex possessed negligible glycolytic activity in the absence of the enzymes of the high speed supernatant fraction. When mitochondria were added to a supernatant system supplemented with optimal amounts of crystalline hexokinase, a 20 per cent stimulation of glycolysis was observed. The supernatant fraction produced minimal amounts of lactate in the absence of exogenous hexokinase; the addition of mitochondria doubled the lactate production. The substitution of glycolytic intermediates for glucose as substrates as well as the addition of exogenous glycolytic enzymes to the supernatant fraction or supernatant fraction plus mitochondria indicated that the mitochondria contributed mainly hexokinase and phosphofructokinase. By direct assay of all of the enzymes of the glycolytic pathway, only hexokinase and phosphofructokinase were shown to be concentrated in the mitochondrial fraction. All other glycolytic enzymes were found to exhibit higher total and specific activities in the supernatant fraction.  相似文献   

8.
The role of enzyme cooperativity in the mechanism of metabolic oscillations is analyzed in a concerted allosteric model for the phosphofructokinase reaction. This model of a dimer enzyme activated by the reaction product accounts quantitatively for glycolytic periodicities observed in yeast and muscle. The Hill coefficient characteristic of enzyme-substrate interactions is determined in the model, both at the steady state and in the course of sustained oscillations. Positive cooperativity is a prerequisite for periodic behavior. A necessary condition for oscillation in a dimer K system is a Hill coefficient larger than 1.6 at the unstable stationary state. The analysis suggests that positive as well as negative effectors of phosphofructokinase inhibit glycolytic oscillations by inducing a decrease in enzyme cooperativity. The results are discussed with respect to glycolytic and other metabolic periodicities.  相似文献   

9.
In order to provide information on the relative binding characteristics of glycolytic enzymes, the effect of fructose-1,6-bisphosphate (FBP) on the release of glycolytic enzymes from cultured pig kidney cells treated with digitonin has been studied. In the absence of FBP, a differential release of these enzymes was observed, with the order of retention being aldolase greater than glyceraldehyde-3-phosphate dehydrogenase greater than glucosephosphate isomerase, triosephosphate isomerase, phosphoglycerokinase, phosphoglucomutase, lactate dehydrogenase, enolase, pyruvate kinase and phosphofructokinase. In the presence of fructose-1,6-bisphosphate, the release of aldolase was considerably enhanced, whereas the release of phosphofructokinase and pyruvate kinase was decreased by this metabolite. No significant alterations in the rate of release of the other enzymes was caused by FBP. These data have been discussed in relation to their contribution to the knowledge of the degree of association and order of binding between glycolytic enzymes and the cytoplasmic matrix.  相似文献   

10.
The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.  相似文献   

11.
Summary Concentrations of glycolytic intermediates, lactate, adenine nucleotides, inorganic phosphate, phosphoarginine and citrate have been estimated after various periods of valve closure (Table 1 and Fig. 1). Mass action ratios of enzyme steps involved in the metabolism of these components are compared with their equilibrium constants. This reveals glycogen phosphorylase, phosphofructokinase, hexosediphosphatase and pyruvate kinase catalyze non-equilibrium reactions. The first three enzymes possess relatively low activities (Table 2).From the changes in concentrations of the glycolytic intermediates it is concluded that phosphofructokinase controls the carbon flow during the first hours after valve closure, whereas later on the rate of conversion of phosphoenolpyruvate is determining this flow. In skeletal muscle phosphofructokinase controls the carbon flow during the whole period of exercise.The concentrations of ADP, AMP and inorganic phosphate increase, whereas the concentrations of ATP, phosphoarginine and citrate decrease during valve closure (Table 1 and Fig. 2). In contrast to skeletal muscle, these changes do not result in a strong increase in the glycolytic flux.There is a much greater potential for ATP hydrolysis by the myofibrillar ATPase system than is actually realized by the adductor muscle during valve closure.  相似文献   

12.
Specific activity of phosphofructokinase is 7-8-fold higher in exponentially growing human fibroblasts than in quiescent cells, but the difference is considerably less pronounced for two other glycolytic enzymes, glucose phosphate isomerase and pyruvate kinase. The ratio of the F-type to L-type phosphofructokinase subunits is essentially the same in growing and resting cells, 4:1. F-type-phosphofructokinase-related antigen concentration is decreased in resting cells as compared with proliferating fibroblasts, but relatively less than the enzyme activity; the ratio of the enzyme activity to the antigen concentration (immunological specific activity) is therefore lower in resting than in growing fibroblasts. Synthesis of phosphofructokinase, as a percentage of the total protein synthesis, is about 30-fold greater during the proliferative phase than in quiescent cells, but this difference is only 3-4-fold for glucose phosphate isomerase and pyruvate kinase. Modulation of the synthesis of phosphofructokinase therefore seems to be responsible for the changes of its specific activity in function of cell proliferation. The appearance of some inactive cross-reacting material in quiescent cells is probably due to post-translational alteration of the pre-synthesized molecules. Compared with other glycolytic enzymes, such as glucose phosphate isomerase and pyruvate kinase, phosphofructokinase seems to be the (or one of the) preferential target of glycolytic induction in proliferating cells.  相似文献   

13.
Functional glycolytic capacity and its regulation have been studied in the fetal guinea-pig heart during O2 deprivation in situ and in the Langendorff perfused heart. Anaerobic glycolytic flux, at 2 mumol/min per g wet wt. was similar in the 48-50 and 60-65 days fetal and adult guinea-pig heart, despite lower fetal phosphofructokinase activity. During O2 deprivation in situ and in the perfused heart glucose was the major substrate, with glycogen making a smaller contribution. Glycolytic capacity became more tightly regulated during fetal heart development. Thus at 48-50 days glycolysis was increased during O2 deprivation by substrate supply, but at 60-65 days activation of phosphofructokinase was required also. Low malate/aspartate cycle activity in the fetal heart was suggested by the absence of an increase in malate and alanine at the expense of aspartate. The large proportion of aerobic glycolytic flux converted to lactate concurred with this. Because of the low O2 consumption and relatively high aerobic glycolytic flux, the proportion of glycolytically-derived ATP was 3-4 fold higher in the fetal than adult heart, and may explain its functional resistance to O2 deprivation.  相似文献   

14.
The pattern of glycolytic intermediates in the lens of alloxan-diabetic rats was indicative of regulation at phosphofructokinase. The changes in metabolites influencing phosphofructokinase activity in the diabetic, relative to the normal, rat lens were: glucose 6-phosphate, 182%; fructose 6-phosphate, 107%; fructose diphosphate, 57%. There was also a marked decrease in phosphoenolpyruvate, pyruvate, lactate and ATP but no significant change in other triose phosphates or cyclic AMP. The resuts are considered in relation to the early changes in [Ca2+] known to occur in lens in diabetes and to the coordinating effect of fructose diphosphate on flux through the glycolytic route.  相似文献   

15.
Fermentation of D-fructose- and D-glucose induced glycolytic oscillations of different period lengths in Saccharomyces carlsbergensis. Recent studies suggested, that D-fructose or one of its metabolites interacted with phosphofructokinase (ATP:D-fructo-6-phosphate 1-phosphofructokinase, EC 2.7.1.11), the core of the glycolytic 'oscillator'. In order to explore the kinetics of interaction, the influence of D-fructose and fructose 1-phosphate on purified yeast phosphofructokinase was studied. D-fructose concentrations up to 0.3 mM stimulated the enzyme, while a further increase led to competitive inhibition. The Hill coefficient for fructose 6-phosphate decreased from 2.8 to 1.0. Fructose 1-phosphate acted in a similar way, up to 1 mM activation and inhibition competitive to fructose 6-phosphate at higher concentration (2.0--3.5 mM) with the same effect on the Hill coefficient. The inhibition patterns obtained with D-fructose or fructose 1-phosphate suggest a sequential random reaction mechanism of yeast phosphofructokinase with fructose 6-phosphate and MgATP2-. The mode of interaction of phosphofructokinase with D-fructose and fructose 1-phosphate is discussed. The influence of both effectors resulted in altered enzyme kinetics, which may cause the different period lengths of glycolytic oscillations.  相似文献   

16.
Human red cells (RBC) respond to moderate Ca2+-loading with increased ATP consumption and stimulation of glycolytic flux. 1. Ca2+-induced metabolite transitions at different pH-values showed a clearcut crossover at the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase (GAPDH/PGK)-steps. 2. The behavior of glycolytic metabolites in iodoacetate-treated, GAPDH-inhibited, and in phosphoenolpyruvate-loaded RBC ruled out activation of hexokinase, phosphofructokinase and pyruvate kinase. 3. Glycolytic stimulation is linked to Ca2+-extrusion rate and not to the loaded Ca2+. 4. Adenine nucleotides and inorganic phosphate could be ruled out as the connecting link between glycolytic activation and Ca2+-extrusion. 5. NADH oxidation was observed at all pH-values studied when the RBC were incubated either at low or high extracellular potassium. NADH is product-inhibitor of GAPDH. The concentration (34 μM) of thermodynamically free NADH calculated from the GAPDH/PGK equilibrium reactants was in the inhibitory range: any decrease in NADH is therefore followed by activation of GAPDH. NAD/NADH ratio seems to be the connecting link between ATP consuming ion transport and ATP generation by glycolysis.  相似文献   

17.
The binding of glycolytic enzymes to the cytoskeleton--influence of pH   总被引:1,自引:0,他引:1  
In a continuing study of the interactions between glycolytic enzymes and cytoskeletal structure, the influence of a variation of the pH of the eluting medium has been investigated. This treatment resulted in an increased degree of binding of most of the glycolytic enzymes with a decrease in pH, with the most marked increases in binding occurring with phosphofructokinase, glyceraldehydephosphate dehydrogenase, enolase and pyruvate kinase. The significance of this data has been discussed with reference to the relative affinities of interaction of the individual glycolytic components and the physiological correlations of these phenomena.  相似文献   

18.
Samokhvalov  V. A.  Mel'nikov  G. V.  Ignatov  V. V. 《Microbiology》2004,73(4):378-382
The role of the storage carbohydrates trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells was studied. Culture aging for one week did not reduce cell viability. During this period, the cells accumulated the storage carbohydrates and showed increased activity of the glycolytic enzymes hexokinase and phosphofructokinase. However, further aging led to a drastic drop in cell viability and to a decrease in the cellular content of trehalose and glycogen and in the activity of hexokinase and phosphofructokinase. The possible reasons for these changes are discussed.  相似文献   

19.
The influence of insulin and glucagon on the release of glycolytic enzyme activities and actin from cultured pig kidney cells treated with digitonin has been studied. Both insulin and glucagon reduced the release of all glycolytic enzymes except for phosphofructokinase, and concurrently reduced the release of actin. These data have been discussed in relation to their contribution to knowledge of the interactions between glycolytic enzymes and actin filaments of the cytoskeleton, and to the influence of hormones on these interactions.  相似文献   

20.
In a study of the interactions between glycolytic enzymes and cytoskeletal structure, the effect of increasing the degree of molecular crowding by the addition of protein was studied. This treatment resulted in an increased degree of binding of all the glycolytic enzymes, but with the most marked increases occurring with phosphofructokinase, enolase and pyruvate kinase. The significance of this data has been discussed in relation to the relative affinities of interaction of the individual components, the influence of molecular crowding and the physiological significance of this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号