首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Factors that directly impact horizontal transmission of the microsporidium Amblyospora albifasciati to its intermediate copepod host, Mesocyclops annulatus were examined in laboratory bioassays. Results were evaluated in relation to life history strategies that facilitate persistence of the parasite in natural populations of its definitive mosquito host, Ochlerotatusalbifasciatus. A moderately high quantity of meiospores from mosquito larvae was required to infect adult female copepods; the IC50 was estimated at 3.6 × 104 meiospores/ml. Meiospore infectivity following storage at 25 °C was detected up to 30 days, while meiospores stored at 4 °C remained infectious to copepods for 17 months with virtually no decline in infectivity. Uninfected female M. annulatus are long-lived; no appreciable mortality was observed in field-collected individuals for 26 days, with a few individuals surviving up to 70 days. The pathological impact of A. albifasciati infection on M. annulatus resulted in a 30% reduction in survivorship after 7 days followed by gradual progressive mortality with no infected individuals surviving more than 40 days. This moderate level of pathogenicity allows for a steady continual release of spores into the environment where they may be ingested by mosquito larvae. Infected female copepods survived in sediment under conditions of desiccation up to 30 days, thus demonstrating their capacity to function as a link for maintaining A. albifasciati between mosquito generations following periods of desiccation. The susceptibility of late stage copepodid M. annulatus to meiospores of A. albifasciati and subsequent transstadial transmission of infection to adult females was established.  相似文献   

3.
To provide objective data on the potential role of dingoes (Canis lupus dingo) in the life cycle of Neospora caninum in Australia, the production of N. caninum oocysts by experimentally infected canids was investigated. Three dingo pups raised in captivity and three domestic dogs were fed tissue from calves infected with an Australian isolate of N. caninum, Nc-Nowra. Oocysts of N. caninum, confirmed by species-specific PCR, were shed in low numbers by one dingo pup at 12-14 days p.i. The remaining animals did not shed oocysts. Furthermore, the blood from two out of three dingoes tested positive for DNA of N. caninum using PCR tests at 14 and 28 days p.i. Oocyst shedding from the intestinal tract of a dingo demonstrates that dingoes are definitive hosts of N. caninum and horizontal transmission of N. caninum from dingoes to farm animals and wildlife may occur in Australia.  相似文献   

4.
The genetic mechanisms underlying host specificity of parasitic infections are largely unknown. After hatching, the larvae of the monogenean parasite, Heterobothrium okamotoi, attach to the gill filaments of hosts and the post-larval worms develop there by consuming nutrients from the host. The susceptibility to H. okamotoi infection differs markedly among fish species. While this parasite can grow on tiger pufferfish (also called fugu), Takifugu rubripes, it appears to be rejected by a close congener, grass pufferfish, Takifugu niphobles, after initial attachment to the gills. To determine the genetic architecture of the pufferfish responsible for this host specificity, we performed genome-wide quantitative trait loci analysis. We raised second generation (F2) hybrids of the two pufferfish species and experimentally infected them with the monogenean in vivo. To assess possible differences in host mechanisms between early and later periods of infection, we sampled fish three h and 21 days after exposure. Genome scanning of fish from the 3 h infection trial revealed suggestive quantitative trait loci on linkage groups 2 and 14, which affected the number of parasites on the gill. However, analysis of fish 21 days p.i. detected a significant quantitative trait locus on linkage group 9 and three other suggestive quantitative trait loci on linkage groups 7, 18 and 22. These results indicated the polygenic nature of the host mechanisms involved in the infection/rejection of H. okamotoi. Moreover the analyses suggested that host factors may play a more important role during the growth period of the parasite than during initial host recognition at the time of attachment. Within the 95% confidence interval of the linkage group 9 quantitative trait locus in the fugu genome, there were 214 annotated protein-coding genes, including immunity-related genes such as Irak4, Muc2 and Muc5ac.  相似文献   

5.
The gastropod mollusc, Oncomelania hupensis is a unique intermediate host for the human parasite Schistosoma japonicum. It is a primary factor for the epidemic of schistosomiasis and its distribution is consistent with the epidemic area of schistosomiasis. Here we report the functional properties of hemocyanin of O. hupensis (OhH), a copper-containing respiratory protein which was isolated from its hemolymph and purified by ammonium sulfate fractionation and ultracentrifugation. We identified the protein characters including UV absorption at 340 nm, copper content and quaternary structure. Furthermore, by induction of phenoloxidase and enzyme-linked immunosorbent assay we show that OhH exhibited o-diphenoloxidase activity after limited proteolysis, and shared carbohydrate epitopes with glycoconjugates of S. japonicum.  相似文献   

6.
7.
For parasites that require multiple hosts to complete their development, genetic interplay with one host may impact parasite transmission and establishment in subsequent hosts. In this study, we used microsatellite loci to address whether the genetic background of snail intermediate hosts influences life-history traits and transmission patterns of dioecious trematode parasites in their definitive hosts. We performed experimental Schistosoma mansoni infections utilizing two allopatric populations of Biomphalaria glabrata snails and assessed intensities and sex ratios of adult parasites in mouse definitive hosts. Our results suggest that the genetic background of hosts at one point in a parasite’s life cycle can influence the intensities and sex ratios of worms in subsequent hosts.  相似文献   

8.
Toxoplasma gondii infects virtually any nucleated cell type of warm-blooded animals and humans including skeletal muscle cells (SkMCs). Infection of SkMCs by T. gondii, differentiation from the highly replicative tachyzoites to dormant bradyzoites and tissue cyst formation are crucial for parasite persistence in muscle tissue. These processes are also prerequisites for one of the major routes of transmission to humans via undercooked or cured meat products. Evidence obtained in vitro and in vivo indicates that SkMCs are indeed a preferred cell type for tissue cyst formation and long-term persistence of T. gondii. This raises intriguing questions about what makes SkMCs a suitable environment for parasite persistence and how the SkMC–T. gondii interaction is regulated. Recent data from our laboratory show that differentiation of SkMCs from myoblasts to syncytial myotubes, rather than the cell type itself, is critical for parasite growth, bradyzoite formation and tissue cyst maturation. Myotube formation is accompanied by a permanent withdrawal from the cell cycle, and the negative cell cycle regulator cell division autoantigen (CDA)-1 directly or indirectly promotes T. gondii stage conversion in SkMCs. Moreover, host cell cycle regulators are specifically modulated in mature myotubes, but not myoblasts, following infection. Myotubes also up-regulate the expression of various pro-inflammatory cytokines and chemokines after T. gondii infection and they respond to IFN-γ by exerting potent anti-parasitic activity. This highlights that mature myotubes are active participants rather than passive targets of the local immune response to T. gondii which may also govern the interaction between SkMCs and the parasite.  相似文献   

9.
The objective of the research was to test the hamster for a model of transmission of congenital toxoplasmosis. A non-invasive method for the diagnosis of pregnancy in hamsters was designed, with a specificity and a sensitivity of 70.2 and 94.7%, respectively (n = 168). Of 32 females with a chronic toxoplasma infection, 3 transmitted Toxoplasma congenitally during their first pregnancy, but not during the subsequent pregnancy. Congenital transmission rates of infections initiated during pregnancy with 2 stages of 2 strains of Toxoplasma were in the range of 33 to 100% of the 76 females inoculated. Only 1 of 17 females transmitted the parasite exclusively via milk. It was concluded that the hamster is a promising species for a model of transmission of congenital toxoplasmosis.  相似文献   

10.
Solitary koinobiont endoparasitoids generally reduce the growth of their hosts by a significant amount compared with healthy larvae. Here, we compared the development and host usage strategies of the solitary koinobiont endoparasitoid, Meteorus pulchricornis, when developing in larvae of a large host species (Mythimna separata) and a much smaller host species (Plutella xylostella). Caterpillars of M. separata were parasitized as L2 and P. xylostella as L3, when they weighed approximately 2 mg. The growth of parasitized M. separata larvae was reduced by almost 95% compared with controls, whereas parasitized P. xylostella larvae grew some 30% larger than controls. Still, adult wasps emerging from M. separata larvae were almost twice as large as wasps emerging from P. xylostella larvae, had larger egg loads after 5 days and produced more progeny. Survival to eclosion was also higher on M. separata than on P. xylostella, although parasitoids developed significantly faster when developing on P. xylostella. Our results provide evidence that koinobionts are able to differentially regulate the growth of different host species. However, there are clearly also limitations in the ability of parasitoids to regulate phenotypic host traits when size differences between different host species are as extreme as demonstrated here.  相似文献   

11.
Serratia marcescens GEI strain was isolated from the gut of the workers of Chinese honey bee Apis cerana and evaluated in the laboratory for the control of Varroa destructor, a parasite of western honey bee A. mellifera. The supernatant and the collected proteins by ammonium sulfate from the bacterial cultures showed a strong miticidal effect on the female mites, with 100% mite mortality in 5 days. Heat (100 °C for 10 min) and proteinase K treatment of the collected proteins destroyed the miticidal activity. The improved miticial activity of this bacterial strain on chitin medium indicated the involvement of chitinases. The expressed chitinases ChiA, ChiB and ChiC1 from S. marcescens GEI by recombinant Escherichia coli showed pathogenicity against the mites in the laboratory. These chitinases were active in a broad pH range (5-9) and the optimum temperatures were between 60 and 75 °C. Synergistic effects of ChiA and ChiB on the miticidal activity against V. destructor were observed. The workers of both honey bee species were not sensitive to the spraying and feeding chitinases. These results provided alternative control strategies for Varroa mites, by formulating chitinase agents and by constructing transgenetic honey bees.  相似文献   

12.
13.
Moesziomyces penicillariae (Brefield) Vànky is a basidiomycete fungus responsible for smut disease on pearl millet, an important staple food in the sub-Sahelian zone. We revisited the life cycle of this fungus. Unlike other Ustilaginales, mating of sporidia was never observed and monoclonal cultures of monokaryotic sporidia were infectious in the absence of mating with compatible partner. These data argued for an atypical monokaryotic diploid cell cycle of M. penicillariae, where teliospores only form solopathogenic sporidia. After inoculation of monoclonal solopathogenic strains on spikelets, the fungus infects the ovaries and induces the folding of the micropilar lips, as observed during early pollination steps. The infected embryo then becomes disorganized and the fungus invades peripheral ovary tissues before sporulating. We evaluated the systemic growth abilities of the fungus. After root inoculation, mycelium was observed around and inside the roots. As argued by transmission electron microscopy (TEM) observations and polymerase chain reaction (PCR) detection using specific primers for M. penicillariae, the fungus can grow from roots to the caulinar meristems. In spite of this systemic growth, no sori were formed on the varieties of pearl millet tested after root inoculation. All together, these data suggest that the reduced life cycle of M. penicillariaei.e. dispersal of ‘ready to infect’ solopathogenic sporidia, floral infection – is an adaptation to the aetiology of this disease to short-cycle pearl millet varieties from the sub-Sahel.  相似文献   

14.
Acanthamoeba is a genus of free-living amoebae found to be able to host many bacterial species living in the environment. Acanthamoebae and Vibrio cholerae are found in the aquatic environments of cholera endemic areas. Previously it has been shown that V. cholerae O1 and O139 can survive and grow in Acanthamoeba castellanii. The aim of this study was to examine the ability of Acanthamoeba polyphaga to host V. cholerae O1 and O139. The interaction between A. polyphaga and V. cholerae strains was studied by means of viable amoeba cell counts and viable count of the bacteria in the absence and presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Electron microscopy was used to determine the localization of V. cholerae inside A. polyphaga. The results showed that A. polyphaga enhanced growth and survival of V. cholerae, which grew and survived inside the amoeba cells for 2 weeks. The electron microscopy showed that A. polyphaga hosted intracellular V. cholerae localized in the vacuoles of amoeba cell. Neither the presence of V. cholerae together with A. polyphaga nor the intracellular localization of the bacteria inhibited growth and survival of A. polyphaga. The outcome of the interaction between these microorganisms may support strongly the role of A. polyphaga as host for V. cholerae O1 and O139.  相似文献   

15.
The first clue to the elucidation of the complete life cycle of Toxoplasma gondii was the identification of an infectious form in cat faeces that could be transmitted orally and could survive in the external environment for extended periods. This personal review describes the scientist (W.M. Hutchison) and the background to the initial discovery and covers the period to the complete elucidation of the life cycle of T. gondii.  相似文献   

16.
Orobanche hederae Duby and its host Hedera helix L. were collected in the North Italian Trentino-Südtirol region and analyzed for their content of polyacetylenes. Both, the host plant (Hedera) and the parasite (Orobanche) contained the polyacetylene falcarinol and two of its dehydroderivatives. The contents of polyacetylenes in Hedera decrease from roots via stems to leaves and contents in Orobanche are only about one-tenth of the contents in the Hedera roots it parasites on. Moreover, relative contents of the more polar polyacetylenes are higher in Orobanche than in Hedera, implying a bias toward the sequestration of more polar compounds.  相似文献   

17.
The developmental stages of Hepatozoon tuatarae were elucidated in both the tuatara host, Sphenodon punctatus and the tick, Amblyomma sphenodonti. PCR amplicons from A. sphenodonti samples identified DNA matching H. tuatarae. Dissection of tick samples showed oogenesis and sporogony occurring in the haemocoel of A. sphenodonti with the average mature oocyst size being 236 × 228 μm. Partial sequence data of the parasite’s small subunit ribosomal gene, obtained by PCR, was used for phylogenetic comparison. Characterisation of the H. tuatarae lifecycle will help in conservation management of the tuatara.  相似文献   

18.
The dynamics of the protozoan parasite Marteilia refringens was studied in Thau lagoon, an important French shellfish site, for 1 year in three potential hosts: the Mediterranean mussel Mytilus galloprovincialis (Mytiliidae), the grooved carpet shell Ruditapes decussatus (Veneriidae) and the copepod Paracartia grani (Acartiidae). Parasite DNA was detected by PCR in R. decussatus. In situ hybridisation showed necrotic cells of M. refringens in the digestive epithelia of some R. decussatus suggesting the non-involvement of this species in the parasite life cycle. In contrast, the detection of M. refringens in mussels using PCR appeared bimodal with two peaks in spring and autumn. Histological observations of PCR-positive mussels revealed the presence of different parasite stages including mature sporangia in spring and autumn. These results suggest that the parasite has two cycles per year in the Thau lagoon and that mussels release parasites into the water column during these two periods. Moreover, PCR detection of the parasite in the copepodid stages of P. grani between June and November supports the hypothesis of the transmission of the parasite from mussels to copepods and conversely. In situ hybridisation performed on copepodites showed labeling in some sections. Unusual M. refringens cells were observed in the digestive tract and the gonad from the third copepodid stage, suggesting that the parasite could infect a copepod by ingestion and be released through the gonad. This hypothesis is supported by the PCR detection of parasite DNA in copepod eggs from PCR-positive females, which suggests that eggs could contribute to the parasite spreading in the water and could allow overwintering of M. refringens. Finally, in order to understand the interactions between mussels and copepods, mussel retention efficiency (number of copepods retained by a mussel) was measured for all P. grani developmental stages. Results showed that all copepod stages could contribute to the transmission of the parasite, especially eggs and nauplii which were retained by up to 90%.  相似文献   

19.
Nitric oxide (NO), derived from catalysis of inducible NO synthase (iNOS), limits malaria parasite growth in mammals. Transforming growth factor (TGF)-beta1 suppresses iNOS in cells in vitro as well as in vivo in mice, but paradoxically severe malaria in humans is associated with low levels of TGF-beta1. We hypothesized that this paradox is a universal feature of infection and occurs in the mosquito Anopheles stephensi, an invertebrate host for Plasmodium that also regulates parasite development with inducible NO synthase (AsNOS). We show that exogenous human TGF-beta1 dose-dependently regulates mosquito AsNOS expression and that parasite killing by low dose TGF-beta1 depends on AsNOS catalysis. Furthermore, induction of AsNOS expression by TGF-beta1 is regulated by NO synthesis. These results suggest that TGF-beta1 plays similar roles during parasite infection in mammals and mosquitoes and that this role is linked to the effects of TGF-beta1 on inducible NO synthesis.  相似文献   

20.
We investigated whether the parasite load of an individual could be predicted by its position in a social network. Specifically, we derived social networks in a solitary, territorial reptile (the tuatara, Sphenodon punctatus), with links based on the sharing of space, not necessarily synchronously, in overlapping territories. Tuatara are infected by ectoparasitic ticks (Amblyomma sphenodonti), mites (Neotrombicula spp.) and a blood parasite (Hepatozoon tuatarae) which is transmitted by the tick. We recorded the location of individual tuatara in two study plots twice daily during the mating season (March) in 2 years (2006 and 2007) on Stephens Island, New Zealand. We constructed weighted, directed networks to represent pathways for parasite transmission, where nodes represented individual tuatara and edges connecting the nodes represented the extent of territory overlap among each pair of individuals. We considered a network-based hypothesis which predicted that the in-strength of individuals (the sum of edge weights directed towards a node) in the derived network would be positively related to their parasite load. Alternatively, if the derived social network did not reflect actual parasite transmission, we predicted other factors such as host sex, size or territory size may better explain variation in parasite infection patterns. We found clear positive relationships between the in-strength of tuatara and their tick loads, and infection patterns with tick-borne blood parasites. In particular, the extent that individuals were connected to males in the network consistently predicted tick loads of tuatara. However, mite loads of tuatara were significantly related to host sex, body size and territory size, and showed little association with network measures. The results suggest that the pathway of transmission of parasites through a population will depend on the transmission mechanism of the parasite, but that social networks provide a powerful predictive tool for some parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号