首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Waterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of − 60 mV, ionic silver (1 μM Ag+) increased inward currents (=IAg) from − 8 ± 2 nA to − 665 ± 41 nA (n = 74; N = 27). IAg activated within 2 min of silver exposure and then rose impetuously. This current was largely reversible by washout and repeatable. IAg reversed around − 30 mV and rectified slightly at more positive potentials. Na+-free bath conditions reduced the silver-induced current to a smaller but sustained current. The response to silver was abolished by the Cl channel blockers DIDS and SITS, whereas niflumic acid strongly potentiated IAg. Intraoocyte injection of AgNO3 to about 1 mM [Ag]i strongly potentiated IAg. Extracellular application of either dithiothreitol (DTT), a compound known to reduce disulfide bridges, or l-cysteine abolished Ag+-activated increase of membrane current. In contrast, n-ethylmaleimide (NEM) which oxidizes SH-groups potentiated IAg. Hypoosmotic bath solution significantly increased IAg whereas hyperosmolar conditions attenuated IAg. The activation of IAg was largely preserved after chelation of cytosolic Ca2+ ions with BAPTA/AM. Taken together, these data suggest that Xenopus oocytes are sensitive to short-term exposure to waterborne Ag+ ions and that the elicited membrane currents result from extra- and intracellular action of Ag+ ions on peptide moieties at the oocyte membrane but may also affect conductances after internalization.  相似文献   

2.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

3.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

4.
A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 μg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at −60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes.  相似文献   

5.
To study the properties of ion channels of the tapeworm Taenia crassiceps, mRNA was isolated from cysticerci and injected into mature oocytes of the frog Xenopus laevis and ion currents were recorded four days after injection with the two-electrode voltage clamp technique. Oocytes injected with mRNA of T. crassiceps expressed outward currents (ITC) that activated instantly after onset of the test pulse, followed by a slow inactivation at potentials over +40 mV, with a reversal potential of −23.2 ± 5 mV. They were not affected by changes on monovalent cationic composition of external media, but replacement of external chloride by gluconate shifted significantly the reversal potential, suggesting that ITC are anion currents, with a permeability sequence of . These currents were sensitive to changes of external pH but not to hypotonic challenges. They were significantly inhibited by DIDS, NPPB and Niflumic acid, but not by 9-anthracene. These results suggest that ITC are the result of expression of anion channels from the tapeworm T. crassiceps.  相似文献   

6.
Heart cells from the clam Ruditapes decussatus were routinely cultured with a high level of reproducibility in sea water based medium. Three cell types attached to the plastic after 2 days and could be maintained in vitro for at least 1 month: epithelial-like cells, round cells and fibroblastic cells. Fibroblastic cells were identified as functional cardiomyocytes due to their spontaneous beating, their ultrastructural characteristics and their reactivity with antibodies against sarcomeric α-actinin, sarcomeric tropomyosin, myosin and troponin T-C. Patch clamp measurements allowed the identification of ionic currents characteristic of cardiomyocytes: a delayed potassium current (I K slow) strongly suppressed (95%) by tetraethylammonium (1 mM), a fast inactivating potassium current (I K fast) inhibited (50%) by 4 amino-pyridine at 1 mM and, at a lower level (34%) by TEA, a calcium dependent potassium current (I KCa) activated by strong depolarization. Three inward voltage activated currents were also characterized in some cardiomyocytes: L-type calcium current (I Ca) inhibited by verapamil at 5 × 10−4 M, T-type Ca2+ current, rapidly activated and inactivated, and sodium current (I Na) observed in only a few cells after strong hyperpolarization. These two currents did not seem to be physiologically essential in the initiation of the beatings of cardiomyocytes. Potassium currents were partially inhibited by tributyltin (TBT) (1 μM) but not by okadaic acid (two marine pollutants). DNA synthesis was also demonstrated in few cultured cells using BrdU (bromo-2′-deoxyuridine). Observed effects of okadaic acid and TBT demonstrated that cultured heart cells from clam Ruditapes decussatus can be used as an experimental model in marine toxicology.  相似文献   

7.
The inhibitory effects of the timing, intensity (II) and period (IT) of night-interrupting light on diapause induction of the Kanzawa spider mite (Tetranychus kanzawai) were investigated in a series of laboratory experiments. During a light and dark period of 8 and 16 h d−1, respectively, a single 1-h night-interrupting light was applied at early (E), middle (M), and late (L) parts of the dark period: i.e., at 3, 7.5, and 12 h after the start of the dark period, respectively. No interrupting light was applied in the control treatment. The incidence of diapause was significantly lower in the M treatment (63%) compared to the control treatment (100%). In the E and L treatments, more than 90% of females entered diapause, which was comparable to the control treatment. Since the longest consecutive dark period during the E and L treatments was longer than the critical dark period (CDP) of 10.5-11 h d−1, during which 50% of females entered diapause, the night-interrupting light probably failed to prevent diapause induction. However, in the M treatment, the longest consecutive dark period was shorter than the CDP; therefore, the night-interrupting light inhibited diapause induction. Moreover, the inhibitory effects of night-interrupting light in the M treatment increased as II and IT increased. The dose of night-interrupting light (II × IT) was significantly negatively related to the incidence of diapause. The median effective dose for 50% disturbance of diapause induction was 2.5 kJ m−2 at wavelengths between 350 and 1050 nm. Our results suggest that the longest consecutive dark period and the dose of night-interrupting light should both be considered when a lighting-based physical control is applied to inhibit diapause induction and consequent overwintering of T. kanzawai in commercial agricultural fields.  相似文献   

8.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

9.
The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767–783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.  相似文献   

10.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

11.
The Gram-positive bacterium Streptococcus pneumoniae is a human respiratory tract pathogen that contributes significantly to global mortality and morbidity. It was recently shown that this bacterial pathogen depends on a conserved ??-carbonic anhydrase (CA, EC 4.2.1.1) for in vitro growth in environmental ambient air and during intracellular survival in host cells. Hence, it is to be expected that this pneumococcal carbonic anhydrase (PCA) contributes to transmission and pathogenesis of the bacterium, making it a potential therapeutic target. In this study, purified recombinant PCA has been further characterized kinetically and for inhibition with a series of inorganic anions and small molecules useful as leads. PCA has appreciable activity as catalyst for the hydration of CO2 to bicarbonate, with a kcat of 7.4 × 105 s−1 and kcat/Km of 6.5 × 107 M−1 s−1 at an optimum pH of 8.4. Inorganic anions such as chloride, bromide, iodide, cyanate, selenocyanate, trithiocarbonate, and cyanide were effective inhibitors of PCA (KIs of 21-98 ??M). Sulfamide, sulfamic acid, phenylboronic, phenylarsonic acid, and diethyldithiocarbamate showed inhibition constants in the low micromolar/submicromolar range (KIs of 0.61-6.68 ??M), whereas that of the sulfonamide acetazolamide was in the nanomolar range (KIs 89 nM). In conclusion, our results show that PCA can effectively be inhibited by a range of molecules that could be interesting leads for obtaining more potent PCA inhibitors. PCA might be a novel target for designing antimicrobial drugs with a new mechanism of action.  相似文献   

12.
Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (Ie) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated Ie when the NADPH oxidase is activated by NADPH and GTPγS. The neutrophil Ie was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in Ie measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The Ie depolarises the neutrophil plasma membrane at a rate of 2.3 V s−1 and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl2 depolarised the membrane potential to +97.8 ± 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition.  相似文献   

13.
Hereditary long QT syndrome (LQTS) is associated with ventricular torsade de pointes tachyarrhythmias and sudden cardiac death. Mutations in a cardiac voltage-gated potassium channel, KCNQ1, induce the most frequent variant of LQTS. We identified a KCNQ1 missense mutation, KCNQ1 S277L, in a patient presenting with recurrent syncope triggered by emotional stress (QTc = 528 ms). This mutation is located in the conserved S5 transmembrane region of the KCNQ1 channel. Using in vitro electrophysiological testing in the Xenopus oocyte expression system, the S277L mutation was found to be non-functional and to suppress wild type currents in dominant-negative fashion in the presence and in the absence of the regulatory ß-subunit, KCNE1. In addition, expression of S277L and wild type KCNQ1 with KCNE1 resulted in a shift of the voltage-dependence of activation by − 8.7 mV compared to wild type IKs, indicating co-assembly of mutant and wild type subunits. The electrophysiological phenotype corresponds well with the severe clinical phenotype of the index patient. However, investigation of family members revealed three patients that exhibit asymptomatic QT interval prolongation (QTc = 493-518 ms). In conclusion, this study emphasizes the value of biophysical testing to provide mechanistic evidence for pathogenicity of ion channel mutations identified in LQTS patients. The inconsistent association of the KCNQ1 S277L mutation with the clinical presentation suggests that additional genetic, epigenetic, or environmental factors play a role in defining the individual clinical LQTS phenotype.  相似文献   

14.
15.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

16.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

17.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

18.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

19.
The folding mechanism and stability of dimeric formate dehydrogenase from Candida methylica was analysed by exposure to denaturing agents and to heat. Equilibrium denaturation data yielded a dissociation constant of about 10−13 M for assembly of the protein from unfolded chains and the kinetics of refolding and unfolding revealed that the overall process comprises two steps. In the first step a marginally stable folded monomeric state is formed at a rate (k1) of about 2 × 10−3 s−1 (by deduction k−1 is about10−4 s−1) and assembles into the active dimeric state with a bimolecular rate constant (k2) of about 2 × 104 M−1 s−1. The rate of dissociation of the dimeric state in physiological conditions is extremely slow (k−2 ∼ 3 × 10−7 s−1).  相似文献   

20.
The effect of three limiting nutrients, calcium pantothenate, vitamin B12 and cobalt chloride (CoCl2), on syngas fermentation using “Clostridium ragsdalei” was determined using serum bottle fermentation studies. Significant results from the bottle studies were translated into single- and two-stage continuous fermentor designs. Studies indicated that three-way interactions between the three limiting nutrients, and two-way interactions between vitamin B12 and CoCl2 had a significant positive effect on ethanol and acetic acid formation. In general, ethanol and acetic acid production ceased at the end of 9 days corresponding to the production of 2.01 and 1.95 g L−1 for the above interactions. Reactor studies indicated the three-way nutrient limitation in two-stage fermentor showed improved acetic acid (17.51 g g−1 cells) and ethanol (14.74 g g−1 cells) yield compared to treatments in single-stage fermentors. These results further support the hypothesis that it is possible to modulate the product formation by limiting key nutrients during C. ragsdalei syngas fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号