首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malaria infection is initiated when a mosquito injects Plasmodium sporozoites into a mammalian host. Sporozoites exhibit gliding motility both in vitro and in vivo. This motility is associated with the secretion of at least two proteins, circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP). Both derive from micronemes, which are organelles that empty out of the apical end of the sporozoite. Sporozoite motility can be initiated in vitro by albumin added to the medium. To investigate how albumin functions in this process, we studied second messenger signalling within the sporozoite. Using pharmacological activators and inhibitors, we have concluded that gliding motility is initiated when albumin interacts with the surface of the sporozoite and that this leads to a signal transduction cascade within the sporozoite, including the elevation of intracellular cAMP, the modulation of sporozoite motility by Ca2+ and the release of microneme proteins.  相似文献   

2.
The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells – mosquito salivary glands and mammalian hepatocytes – via involvement in sporozoite motility.  相似文献   

3.
Malaria sporozoites have the unique capacity to invade two entirely different types of target cell in the mosquito vector and the vertebrate host during the course of the parasite's life cycle. Although little is known about the specific interaction of the sporozoite with its target cells, two sporozoite proteins, circumsporozoite (CS) and thrombospondin-related adhesive protein (TRAP), have been shown to play important roles in the invasion of both cell types. CS protein is a multifunctional protein involved in sporogony, invasion of the salivary glands, the specific arrest of sporozoites in the liver sinusoid, gliding motility of the sporozoite, and hepatocyte recognition and entry. TRAP has been shown to be critical for sporozoite infection of the mosquito salivary glands and liver cells, and is essential for sporozoite gliding motility. This review will focus on the involvement of these molecules in sporozoite motility and the invasion of host cells.  相似文献   

4.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

5.
Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion.  相似文献   

6.
The malaria infection is initiated in mammals by injection of the sporozoite stage of the parasite through the bite of Plasmodium-infected, female Anopheles mosquitoes. Sporozoites are injected into extravascular portions of the skin while the mosquito is probing for a blood source. Sporozoite gliding motility allows them to locate and penetrate blood vessels of the dermis or subcutaneous tissues; once in the blood, they reach the liver, within which they continue their development. Some of the injected parasites invade dermal lymph vessels and travel to the proximal draining lymphatic node, where they interact with host immunocytes. The host responds to viable or attenuated sporozoites with antibodies directed against the immunodominant circumsporozoite protein (CSP), as well as against other sporozoite proteins. These CSP antibodies can inhibit the numbers of sporozoites injected by mosquitoes and the motility of those injected into the skin. This first phase of the immune response is followed by cell-mediated immunity involving CD8 T-cells directed against the developing liver stage of the parasite. This review discusses the early history of imaging studies, and focuses on the role that imaging has played in enabling a better understanding of both the induction and effector functions of the immune responses against sporozoites.  相似文献   

7.
Plasmodium sporozoites, the transmission form of the malaria parasite, successively invade salivary glands in the mosquito vector and the liver in the mammalian host. Sporozoite capacity to invade host cells is mechanistically related to their ability to glide on solid substrates, both activities depending on the transmembrane protein TRAP. Here, we show that loss-of- function mutations in two adhesive modules of the TRAP ectodomain, an integrin-like A-domain and a thrombospondin type I repeat, specifically decrease sporozoite invasion of host cells but do not affect sporozoite gliding and adhesion to cells. Irrespective of the target cell, i.e. in mosquitoes, rodents and cultured human or hamster cells, sporozoites bearing mutations in one module are less invasive, while those bearing mutations in both modules are non-invasive. In Chinese hamster ovary cells, the TRAP modules interact with distinct cell receptors during sporozoite invasion, and thus act as independently active pass keys. As these modules are also present in other members of the TRAP family of proteins in Apicomplexa, they may account for the capacity of these parasites to enter many cell types of phylogenetically distant origins.  相似文献   

8.
9.
Successful malaria transmission from the mosquito vector to the mammalian host depends crucially on active sporozoite motility. Sporozoite locomotion and host cell invasion are driven by the parasite's own actin/myosin motor. A unique feature of this motor machinery is the presence of very short subpellicular actin filaments. Therefore, F‐actin stabilizing proteins likely play a central role in parasite locomotion. Here, we investigated the role of the Plasmodium berghei actin capping protein (PbCP), an orthologue of the heterodimeric regulator of filament barbed end growth, by reverse genetics. Parasites containing a deletion of the CP beta‐subunit developed normally during the pathogenic erythrocytic cycle. However, due to reduced ookinete motility, mutant parasites form fewer oocysts and sporozoites in the Anopheles vector. These sporozoites display a vital deficiency in forward gliding motility and fail to colonize the mosquito salivary glands, resulting in complete attenuation of life cycle progression. Together, our results show that the CP beta‐subunit exerts an essential role in the insect vector before malaria transmission to the mammalian host. The vital role is restricted to fast locomotion, as displayed by Plasmodium sporozoites.  相似文献   

10.
Gliding motility and cell traversal by the Plasmodium ookinete and sporozoite invasive stages allow penetration of cellular barriers to establish infection of the mosquito vector and mammalian host, respectively. Motility and traversal are not observed in red cell infectious merozoites, and we have previously classified genes that are expressed in sporozoites but not merozoites (S genes) in order to identify proteins involved in these processes. The S4 gene has been described as criticaly involved in Cell Traversal for Ookinetes and Sporozoites (CelTOS), yet knockout parasites (s4/celtos¯) do not generate robust salivary gland sporozoite numbers, precluding a thorough analysis of S4/CelTOS function during host infection. We show here that a failure of oocysts to develop or survive in the midgut contributes to the poor mosquito infection by Plasmodium yoelii (Py) s4/celtos¯ rodent malaria parasites. We rescued this phenotype by expressing S4/CelTOS under the ookinete‐specific circumsporozoite protein and thrombospondin‐related anonymous protein‐related protein (CTRP) promoter (S4/CelTOSCTRP), generating robust numbers of salivary gland sporozoites lacking S4/CelTOS that were suitable for phenotypic analysis. Py S4/CelTOSCTRP sporozoites showed reduced infectivity in BALB/c mice when compared to wild‐type sporozoites, although they appeared more infectious than sporozoites deficient in the related traversal protein PLP1/SPECT2 (Py plp1/spect2¯). Using in vitro assays, we substantiate the role of S4/CelTOS in sporozoite cell traversal, but also uncover a previously unappreciated role for this protein for sporozoite gliding motility.  相似文献   

11.
Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.  相似文献   

12.
The early transcribed membrane proteins ETRAMPs belong to a family of small, transmembrane molecules unique to Plasmodium parasite, which share a signal peptide followed by a short lysine-rich stretch, a transmembrane domain and a variable, highly charged C-terminal region. ETRAMPs are usually expressed in a stage-specific manner. In the blood stages they localize to the parasitophorous vacuole membrane and, in described cases, to vesicle-like structures exported to the host erythrocyte cytosol. Two family members of the rodent parasite Plasmodium berghei, uis3 and uis4, localize to secretory organelles of sporozoites and to the parasitophorous membrane vacuole of the liver stages. By the use of specific antibodies and the generation of transgenic lines, we showed that the P. berghei ETRAMP family member SEP2 is abundantly expressed in gametocytes as well as in mosquito and liver stages. In intracellular parasite stages, SEP2 is routed to the parasitophorous vacuole membrane while, in invasive ookinete and sporozoite stages, it localizes to the parasite surface. To date SEP2 is the only ETRAMP protein detected throughout the parasite life cycle. Furthermore, SEP2 is also released during gliding motility of salivary gland sporozoites. A limited number of proteins are known to be involved in this key function and the best characterized, the CSP and TRAP, are both promising transmission-blocking candidates. Our results suggest that ETRAMP members may be viewed as new potential candidates for malaria control.  相似文献   

13.
Sporozoites from all Plasmodium species analysed so far express the thrombospondin-related adhesive protein (TRAP), which contains two distinct adhesive domains. These domains share sequence and structural homology with von Willebrand factor type A-domain and the type I repeat of human thrombospondin (TSP). Increasing experimental evidence indicates that the adhesive domains bind to vertebrate host ligands and that TRAP is involved, through an as yet unknown mechanism, in the process of sporozoite motility and invasion of both mosquito salivary gland and host hepatocytes. We have generated transgenic P.berghei parasites in which the endogenous TRAP gene has been replaced by either P.falciparum TRAP (PfTRAP) or mutated versions of PfTRAP carrying amino acid substitutions or deletions in the adhesive domains. Plasmodium berghei sporozoites carrying the PfTRAP gene develop normally, are motile, invade mosquito salivary glands and infect the vertebrate host. A substitution in a conserved residue of the A-domain or a deletion in the TSP motif of PfTRAP impairs the sporozoites' ability to invade mosquito salivary glands. Notably, midgut sporozoites from these transgenic parasites are still able to infect mice. Midgut sporozoites carrying a mutation in the A-domain of PfTRAP are motile, while no gliding motility could be detected in sporozoites with a TSP motif deletion.  相似文献   

14.
15.
Apicomplexan parasites constitute one of the most significant groups of pathogens infecting humans and animals. The liver stage sporozoites of Plasmodium spp. and tachyzoites of Toxoplasma gondii, the causative agents of malaria and toxoplasmosis, respectively, use a unique mode of locomotion termed gliding motility to invade host cells and cross cell substrates. This amoeboid-like movement uses a parasite adhesin from the thrombospondin-related anonymous protein (TRAP) family and a set of proteins linking the extracellular adhesin, via an actin-myosin motor, to the inner membrane complex. The Plasmodium blood stage merozoite, however, does not exhibit gliding motility. Here we show that homologues of the key proteins that make up the motor complex, including the recently identified glideosome-associated proteins 45 and 50 (GAP40 and GAP50), are present in P. falciparum merozoites and appear to function in erythrocyte invasion. Furthermore, we identify a merozoite TRAP homologue, termed MTRAP, a micronemal protein that shares key features with TRAP, including a thrombospondin repeat domain, a putative rhomboid-protease cleavage site, and a cytoplasmic tail that, in vitro, binds the actin-binding protein aldolase. Analysis of other parasite genomes shows that the components of this motor complex are conserved across diverse Apicomplexan genera. Conservation of the motor complex suggests that a common molecular mechanism underlies all Apicomplexan motility, which, given its unique properties, highlights a number of novel targets for drug intervention to treat major diseases of humans and livestock.  相似文献   

16.
Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2(-) sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.  相似文献   

17.
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post‐translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co‐localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non‐infectious to mice. Importantly, genetic complementation of the DHHC3‐ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.  相似文献   

18.
The invasive stages of malaria and other apicomplexan parasites use a unique motility machinery based on actin, myosin and a number of parasite-specific proteins to invade host cells and tissues. The crucial importance of this motility machinery at several stages of the life cycle of these parasites makes the individual components potential drug targets. The different stages of the malaria parasite exhibit strikingly diverse movement patterns, likely reflecting the varied needs to achieve successful invasion. Here, we describe a Tool for Automated Sporozoite Tracking (ToAST) that allows the rapid simultaneous analysis of several hundred motile Plasmodium sporozoites, the stage of the malaria parasite transmitted by the mosquito. ToAST reliably categorizes different modes of sporozoite movement and can be used for both tracking changes in movement patterns and comparing overall movement parameters, such as average speed or the persistence of sporozoites undergoing a certain type of movement. This allows the comparison of potentially small differences between distinct parasite populations and will enable screening of drug libraries to find inhibitors of sporozoite motility. Using ToAST, we find that isolated sporozoites change their movement patterns towards productive motility during the first week after infection of mosquito salivary glands.  相似文献   

19.
Malaria is transmitted to a mammalian host when the sporozoite stage of the Plasmodium parasite is injected by a mosquito vector. Sporozoites are unique in being able to interact with both hosts. Formed and released in the mosquito midgut, sporozoites bind to the salivary glands and invade their secretory cells. Once injected into the mammalian host, they home to the liver and invade hepatocytes. Recent work has shown that two sporozoite surface proteins, CS and TRAP, act in both hosts, perform multiple functions, and are each essential for the parasite at more than one step of its life cycle.  相似文献   

20.
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90 kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号