首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Gorlin syndrome is an autosomal dominant disorder that predisposes to basal cell carcinomas of the skin, ovarian fibromas, and medulloblastomas. Unlike other hereditary disorders associated with cancer, it features widespread developmental defects. To investigate the possibility that the syndrome is caused by mutation in a tumor suppressor gene, we searched for loss of heterozygosity in 16 sporadic basal cell carcinomas, 2 hereditary basal cell carcinomas, and 1 hereditary ovarian fibroma and performed genetic linkage studies in five Gorlin syndrome kindreds. Eleven sporadic basal cell carcinomas and all 3 hereditary tumors had allelic loss of chromosome 9q31, and all informative kindreds showed tight linkage between the Gorlin syndrome gene and a genetic marker in this region. Loss of heterozygosity at this chromosomal location, particularly in hereditary tumors, implies that the gene is homozygously inactivated and normally functions as a tumor suppressor. In contrast, hemizygous germline mutations lead to multiple congenital anomalies.  相似文献   

2.
Nevoid basal cell carcinoma syndrome (NBCCS; basal cell nevus syndrome or Gorlin syndrome) is a cancer-predisposition syndrome characterized by multiple basal cell carcinomas (BCCs) and diverse developmental defects. The gene for NBCCS has been mapped to 9q23.1-q31 in North American and European families. In addition, loss of heterozygosity (LOH) for genetic markers in this region has been detected in sporadic BCCs, indicating that the NBCCS gene is probably a tumor-suppressor gene. In this study we have determined that the NBCCS gene is also linked to this region in Australasian pedigrees and that there is no significant evidence of heterogeneity. We have defined the localization of the gene by multipoint and haplotype analysis of 15 families, using four microsatellite markers. LOH at these loci was detected in 50% of sporadic BCCs, a rate that is significantly higher than that in other skin lesions used as controls.  相似文献   

3.
The human homologue of the Drosophila segment polarity gene patched is implicated in the development of nevoid basal cell carcinoma syndrome (NBCCS) and in the genesis of sporadic basal cell carcinomas. In order to examine the phenotypic variability in NBCCS and to highlight functionally important domains of the PTCH protein, we have now screened 71 unrelated NBCCS individuals for mutations in the PTCH exons. We identified 28 mutations that are distributed throughout the entire gene, and most (86%) cause protein truncation. As part of this analysis, we demonstrate that failure of one NBCCS family to show clear linkage to chromosome 9q22.3-31 is most likely due to germinal mosaicism. We have identified three families bearing identical mutations with variable phenotypes, suggesting phenotypic variability in NBCCS is a complex genetic event. No phenotype genotype correlation between the position of truncation mutations and major clinical features was evident. Two missense mutations have been identified, and their location within transmembrane domains supports the notion that PTCH may have a transport function. The preponderance of truncation mutants in the germ line of NBCCS patients suggests that the developmental defects associated with the disorder are most likely due to haploinsufficiency.  相似文献   

4.
Small submicroscopic genomic deletions and duplications constitute up to 15% of all mutations underlying human monogenic diseases. In this study, we used newly designed high-resolution oligonucleotide microarrays with a median distance between the probes of 776 bp (average probe interval 2,271 bp) to detect gene deletions in nevoid basal cell carcinoma syndrome (NBCCS) patients. NBCCS, also called Gorlin syndrome, is characterized by developmental defects and tumorigenesis such as medulloblastomas and basal cell carcinomas, caused by mutations of the human patched-1 (PTCH1) gene. Two out of three deletions could not be detected by a conventional chromosomal analysis. A submicroscopic deletion as small as 165 kb was detected affecting only PTCH1, whereas the other two deletions were much larger (5 and 11 Mb). We demonstrated not only the exact number of genes involved in the deletion but also rapidly determined the junction sequences after pinpointing the breakpoint regions in all individuals analyzed. This report of an array-based determination of junction sequences of long deletions circumvented a labor-intensive analysis such as Southern blotting or FISH. Alu-mediated recombination in one case and non-homologous end joining in the other two were probably implicated in the generation of deletions. This method will contribute to the understanding of molecular pathogenesis of gene deletions as well as rapid genetic testing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder involving hearing loss, branchial defects, ear pits and renal abnormalities. Oto-facio-cervical (OFC) syndrome is clinically similar to BOR syndrome, with clinical features in addition to those of BOR syndrome. Mutations in the EYA1 gene (localised to 8q13.3) account for nearly 70% of BOR syndrome cases exhibiting at least three of the major features. Small intragenic deletions of the 3' region of the gene have also been reported in patients with BOR syndrome. We have developed a fluorescent quantitative multiplex polymerase chain reaction for three 3' exons (7, 9 and 13) of the EYA1 gene. This dosage assay, combined with microsatellite marker analysis, has identified de novo deletions of the EYA1 gene and surrounding region in two patients with complex phenotypes involving features of BOR syndrome. One patient with OFC syndrome carried a large deletion of the EYA1 gene region, confirming that OFC syndrome is allelic with BOR syndrome. Microsatellite analysis has shown that comparison of the boundaries of this large deletion with other reported rearrangements of the region reduces the critical region for Duane syndrome (an eye movement disorder) to between markers D8S553 and D8S1797, a genetic distance of approximately 1 cM.  相似文献   

6.
7.
Molecular characterization of patients with 18q23 deletions.   总被引:3,自引:0,他引:3       下载免费PDF全文
The 18q- syndrome is a deletion syndrome that is characterized by mental retardation, hearing loss, midfacial hypoplasia, growth deficiency, and limb anomalies. Most patients with this syndrome have deletions from 18q21-qter. We report on three patients with deletions of 18q23. A mother and daughter with identical deletions of 18q23 have many of the typical features of the 18q- syndrome, including midfacial hypoplasia and hearing loss. In contrast, the third patient has few of the symptoms of the 18q- syndrome. A contig of the 18q23 region was generated to aid in the mapping of the breakpoints. FISH was used to map both breakpoints to the same YAC clone. Furthermore, somatic-cell hybrids from the daughter and the third patient were isolated. The mapping results of sequence-tagged sites relative to the two breakpoints were identical, suggesting that the two deletion breakpoints map very close to one another. The analyses of these patients demonstrate that the critical region for the 18q- syndrome maps to 18q23 but that a deletion of 18q23 does not always lead to the clinical features associated with the syndrome. These patients demonstrate the wide phenotypic variability associated with deletions of 18q.  相似文献   

8.
9.
We have identified a family afflicted over multiple generations with posterior fossa tumors of infancy, including central nervous system (CNS) malignant rhabdoid tumor (a subset of primitive neuroectodermal tumors, or PNET) and choroid plexus carcinoma. Various hereditary tumor syndromes, including Li-Fraumeni syndrome, Gorlin syndrome, and Turcot syndrome, have been linked to increased risk of developing CNS PNETs and choroid plexus tumors. Malignant rhabdoid tumors of the CNS and kidney show loss of heterozygosity at chromosome 22q11. The hSNF5 gene on chromosome 22q11 has recently been identified as a candidate tumor-suppressor gene in sporadic CNS and renal malignant rhabdoid tumors. We describe a family in which both affected and some unaffected family members were found to have a germline splice-site mutation of the hSNF5 gene, leading to exclusion of exon 7 from the mature cDNA and a subsequent frameshift. Tumor tissue shows loss of the wild-type hSNF5 allele, in keeping with a tumor-suppressor gene. These findings suggest that germline mutations in hSNF5 are associated with a novel autosomal dominant syndrome with incomplete penetrance that predisposes to malignant posterior fossa brain tumors in infancy.  相似文献   

10.
Summary The molecular basis of group A xeroderma pigmentosum (XP) was investigated, and 3 mutations located in a zinc finger consensus sequence (nucleotide 313–387) of the XP group A complementing (XPAC) gene were identified in 2 Caucasian patients GM2990 and GM2009 who had typical symptoms of group A XP. The first mutation was a C deletion at nucleotide 374. Patient GM2990 was a homozygote for this mutation. The second mutation was a 5-bp deletion (CTTAT) at nucleotides 349–353. The third mutation was a G to T transversion at nucleotide 323 that alters the Cys-108 codon (TGT) to a Phe codon (TTT). Patient GM2009 was a compound heterozygote for the 5-bp deletion and the missense mutation. Both deletions introduce frameshifts with premature translation terminations resulting in instability of the XPAC mRNA and disruption of the putative zinc finger domain of the XPAC protein. The missense mutation also predicts disruption of the zinc finger domain of the XPAC protein. The expression study showed that the missense mutation does indeed causes loss of repair activity of the XPAC protein. We conclude that these 3 mutations are responsible for group A XP.  相似文献   

11.
12.
To identify the loci associated with progression of cervical carcinoma, chromosome 6 regions were tested for loss of heterozygosity. Detailed analysis with 28 microsatellite markers revealed a high frequency of allelic deletions for several loci of the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16-21, 6q23-24, 6q25, 6q27) arms of chromosome 6. Examination of 37 microdissected carcinoma and 22 cervical dysplasia specimens revealed allelic deletions from the HLA class I-III genes (6p22-21.3) and subtelomeric locus 6p25 were found in more than 40% dysplasia specimens. With multiple microdissection of cryosections, genetic heterogeneity of squamous cervical carcinoma was analyzed, and clonal and subclonal allelic deletions from chromosome 6 were identified. Half of the tumors had clonal allelic deletion of D6S273 (6p21.3), which is in a Ly6G6D (MEGT1) intron in the HLA class III gene locus. The frequency of allelic deletions from the chromosome 6 long arm was no more than 20% in dysplasias. Allelic deletions from two loci, 6q14 and 6q16-21, were for the first time associated with invasion and metastasis in cervical carcinoma.  相似文献   

13.
Velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a human disorder characterized by a number of phenotypic features including cardiovascular defects. Most VCFS/DGS patients are hemizygous for a 1.5-3.0 Mb region of 22q11. To investigate the etiology of this disorder, we used a cre-loxP strategy to generate mice that are hemizygous for a 1.5 Mb deletion corresponding to that on 22q11. These mice exhibit significant perinatal lethality and have conotruncal and parathyroid defects. The conotruncal defects can be partially rescued by a human BAC containing the TBX1 gene. Mice heterozygous for a null mutation in Tbx1 develop conotruncal defects. These results together with the expression patterns of Tbx1 suggest a major role for this gene in the molecular etiology of VCFS/DGS.  相似文献   

14.
This study is the first to describe age-related changes in a large cohort of patients with Phelan–McDermid syndrome (PMS), also known as 22q13 deletion syndrome. Over a follow-up period of up to 12 years, physical examinations and structured interviews were conducted for 201 individuals diagnosed with PMS, 120 patients had a focused, high-resolution 22q12q13 array CGH, and 92 patients’ deletions were assessed for parent-of-origin. 22q13 genomic anomalies include terminal deletions of 22q13 (89 %), terminal deletions and interstitial duplications (9 %), and interstitial deletions (2 %). Considering different age groups, in older patients, behavioral problems tended to subside, developmental abilities improved, and some features such as large or fleshy hands, full or puffy eyelids, hypotonia, lax ligaments, and hyperextensible joints were less frequent. However, the proportion reporting an autism spectrum disorder, seizures, and cellulitis, or presenting with lymphedema or abnormal reflexes increased with age. Some neurologic and dysmorphic features such as speech and developmental delay and macrocephaly correlated with deletion size. Deletion sizes in more recently diagnosed patients tend to be smaller than those diagnosed a decade earlier. Seventy-three percent of de novo deletions were of paternal origin. Seizures were reported three times more often among patients with a de novo deletion of the maternal rather than paternal chromosome 22. This analysis improves the understanding of the clinical presentation and natural history of PMS and can serve as a reference for the prevalence of clinical features in the syndrome.  相似文献   

15.
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.  相似文献   

16.
The MSSE gene predisposes to the development of multiple invasive but self-healing skin tumours (multiple self-healing squamous epitheliomata, MSSE). MSSE (previously named ESS1) was mapped to chromosome 9q by linkage analysis; haplotype analysis in families then suggested a common founder mutation and indicated that the gene lies in the interval D9S1–D9S29 (9q22–q31). Squamous cell carcinomata also develop as one of the complications of xeroderma pigmentosum, and one of the xeroderma pigmentosum genes (XPA) maps within the MSSE interval. We have investigated the hypothesis that a novel dominant mutation in XPA is responsible for MSSE. We screened the entire coding region, 3′ untranslated region (UTR) and 5′UTR of XPA for germline mutations in MSSE families by single-stranded conformation polymorphism analysis and by direct DNA sequencing. No mutations were detected but a novel intragenic polymorphism was identified in the 5′UTR of XPA, in both MSSE-affected and unrelated normal individuals. This XPA polymorphism and nine new polymorphic markers that map in the MSSE region were typed in eleven MSSE families; XPA was excluded as the MSSE gene and the most likely location of MSSE was reduced to the interval between D9S197 and (D9S287, D9S1809). The Patched (PTCH) gene, which is mutated in naevoid basal cell carcinoma syndrome (NBCCS or Gorlin syndrome) lies in this interval and all MSSE families have been shown to share a common haplotype at three novel intragenic PTCH polymorphisms. Although no mutation has been detected in MSSE families, PTCH has not been excluded as the MSSE gene. Received: 6 May 1997 / Accepted: 3 September 1997  相似文献   

17.
CHARGE syndrome is an autosomal dominant inherited disorder characterized by a specific and recognizable pattern of anomalies. De novo mutations or deletions of the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. In this report, we describe a patient with a typical phenotype characterized by psychomotor retardation, hypertrichosis, facial asymmetry, synophria, failure to thrive, developmental delay and gastro-esophageal reflux, carrying a de novo 6.04 Mb interstitial deletion in 8q12.1q12.3 detected by single nucleotide polymorphism (SNP) array analysis. Despite the deletion includes CHD7 and although the patient shares some of the clinical features of the CHARGE syndrome, she does not fulfill the clinical criteria for this syndrome. To the best of our knowledge, this is the second case with an entire deletion of the CHD7 gene not leading to CHARGE syndrome and, for this reason, useful to expand and further delineate the clinical features associated with the 8q12.1q12.3 deletion. Furthermore, the literature review revealed that the phenotype secondary to duplications of the same region partially overlaps with the phenotype reported in this study. Selected genes that are present in the hemizygous state and which might be important for the phenotype of this patient, are discussed in context of the clinical features.  相似文献   

18.
The human chromosome 22q11.2 region is susceptible to rearrangements during meiosis leading to velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome (22q11DS) characterized by conotruncal heart defects (CTDs) and other congenital anomalies. The majority of individuals have a 3 Mb deletion whose proximal region contains the presumed disease-associated gene TBX1 (T-box 1). Although a small subset have proximal nested deletions including TBX1, individuals with distal deletions that exclude TBX1 have also been identified. The deletions are flanked by low-copy repeats (LCR22A, B, C, D). We describe cardiac phenotypes in 25 individuals with atypical distal nested deletions within the 3 Mb region that do not include TBX1 including 20 with LCR22B to LCR22D deletions and 5 with nested LCR22C to LCR22D deletions. Together with previous reports, 12 of 37 (32%) with LCR22B–D deletions and 5 of 34 (15%) individuals with LCR22C–D deletions had CTDs including tetralogy of Fallot. In the absence of TBX1, we hypothesized that CRKL (Crk-like), mapping to the LCR22C–D region, might contribute to the cardiac phenotype in these individuals. We created an allelic series in mice of Crkl, including a hypomorphic allele, to test for gene expression effects on phenotype. We found that the spectrum of heart defects depends on Crkl expression, occurring with analogous malformations to that in human individuals, suggesting that haploinsufficiency of CRKL could be responsible for the etiology of CTDs in individuals with nested distal deletions and might act as a genetic modifier of individuals with the typical 3 Mb deletion.  相似文献   

19.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

20.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号