首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

2.
North American oak species, with their characteristic strong episodic seasonal shoot growth, are highly problematic for clonal micropropagation, resulting in the inability to achieve a stabilized shoot multiplication stage. The potential for initiating and proliferating shoot cultures derived from Quercus alba, Q. bicolor and Q. rubra explants was investigated, and a micropropagation method for these species was developed. Branch segments from 6 to 7-year-old trees were forced-flushed and the forced shoots were used as source of explants for culture initiation. A consistent shoot multiplication stage was achieved, in 13 of the 15 genotypes established in vitro, although marked differences occurred in explants from different genotypes/species. The control of efficient shoot multiplication involved the culture of decapitated shoots in a stressful horizontal position on cytokinin-containing medium with a sequence of transfers within a 6-week subculture cycle, which was beneficial to overcoming the episodic character of shoot growth. During each subculture cycle, the horizontally placed explants were cultured on media containing 0.2 mg l−1 benzyladenine (BA) for 2 weeks with two successive transfers (2 weeks each) to fresh medium with 0.1 mg l−1 BA, giving a 6-week subculture cycle. The general appearance and vigor of Q. alba and Q. bicolor shoot cultures were improved by the inclusion of both 0.1 mg l−1 BA and 0.5 mg l−1 zeatin in the medium used for the second transfer within the 6-week subculture cycle. Addition of AgNO3 (3 mg l−1) to the shoot proliferation medium of Q. rubra had a significant positive effect on shoot development pattern by reducing deleterious symptoms, including shoot tip necrosis and early senescence of leaves. The three species showed acceptable in vitro rooting rates by culturing microcuttings in medium containing 25 mg l−1 indolebutyric acid for 48 h with subsequent transfer to auxin-free medium supplemented with 0.4% activated charcoal. Although an initial 5-day dark period generally improved the rooting response, it was detrimental to the quality of regenerated plantlets. However, activated charcoal stimulated not only the rooting frequencies, but it also enhanced plant quality, as evidenced by root, shoot and leaf growth.  相似文献   

3.
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, α-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)−1 and the maximum growth rates of N. europaea and N. eutropha are 0.094 d−1 and 0.175 d−1, respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.  相似文献   

4.
Optimization of the medium components which enhance sporulation of the two mating types of the fungus Blakeslea trispora ATCC 14271 and ATCC 14272 (a heterothallic Zygomycota producing carotene) was achieved with the aid of response surface methodology (RSM). Glucose, corn steep liquor, yeast extract, and ammonium sulfate were investigated as carbon and nitrogen sources in a basal medium. RSM was adopted to optimize the medium in order to obtain a good growth of the fungus as a prerequisite for enhanced sporulation. In the second step, the basal medium was supplemented with different trace elements which significantly affect sporulation (i.e. CuSO4·5H2O, FeCl3·6H2O, Co(NO3)2·6H2O, and MnCl2·4H2O). Central composite design proved to be valuable in optimizing a chemically defined solid medium for spore production of B. trispora. The composition of the new solid medium to enhance spore production by B. trispora (ATCC 14271) is as follows (per liter): 7.5 g glucose, 3.2 g corn steep liquor, 1.7 g yeast extract, 4.1 g ammonium sulfate, 6 mg CuSO4·5H2O, 276 mg FeCl3·6H2O, 2 mg Co(NO3)2·6H2O, and 20 g agar (pH 6.0). Practical validation of this optimum medium gave spore number of 1.2 × 108 spores/dish which is 77% higher than that produced in Potato Dextrose Agar (PDA). In the case of B. trispora (ATCC 14272) the new solid substrate for enhanced sporulation consists of (per l) 6.4 g glucose, 3.3 g corn steep liquor, 1.4 g yeast extract, 4.3 g ammonium sulfate, 264 mg CuSO4·5H2O, 485 mg FeCl3·6H2O, 223 mg MnCl2.4H2O, and 20 g agar (pH 6.0). Spore numbers of 2 × 107 spores/dish were obtained on the new medium by B. trispora (ATCC 14272), which is 95% higher than that produced on PDA. The results corroborated the validity and the effectiveness of the models. The new media considerably improved sporulation of both strains of B. trispora compared to the production of spores on PDA, which is the medium usually used for sporulation of the fungus.  相似文献   

5.
6.
In this study, the methanol extract of Arthrospira (Spirulina) platensis was examined for acute and subchronic toxicities. The extract did not produce any sign of toxicity within 7 days after feeding it at a single high dose of 6 g kg−1 body weight to female and male Swiss mice. For the subchronic toxicity test, the extract at doses of 6, 12, and 24 mg kg−1 body weight was orally administered to six male and six female Wistar rats daily for 12 weeks. Throughout the study period, we did not observe any abnormalities on behavior, food and water intakes, and health status among the treated animals. The hematology and clinical chemistry parameters of treated groups did not significantly differ from those of the controls in both sexes. Postmortem examination of the test groups also showed no abnormalities in both gross and histological findings. These results thus suggest that the methanol extract of A. platensis did not cause acute or subchronic toxicity in our experimental animals.  相似文献   

7.
We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = −26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = −28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = −14.6 ± 0.1 ‰), its isotopic composition (δ13C = −21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = −28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.  相似文献   

8.
The regeneration potential and antioxidative enzyme activities of economically important Brassica rapa var. turnip were evaluated. Calli were induced from leaf explants of seed-derived plantlets on Murashige and Skoog (MS) medium incorporated with different concentrations of various plant growth regulators (PGRs). The highest leaf explant response (83%) was recorded for 2.0 mg l−1 benzyladenine (BA) and 1.0 mg l−1 α-naphthaleneacetic acid (NAA). Subsequent subculturing of callus after 3 weeks of culture, on medium with similar compositions of PGRs, induced shoot organogenesis. The highest shoot induction response (83%) was recorded for 5.0 mg l−1 BA after 5 weeks of transfer. However, 7.8 shoots/explant were recorded for 2.0 mg l−1 BA. The transferring of shoots to elongation medium resulted in 5.1-cm-long shoots on 10 mg l−1 of gibberellic acid (GA3). Rooted plantlets were obtained on MS medium containing different concentrations of indole butyric acid (IBA). The determination of activities of antioxidative enzymes (superoxide dismutase [SOD], ascorbate peroxidase [APX], catalase [CAT], glutathione peroxidase [GPX], and peroxidase [POD]) revealed involvement of these enzymes in callus formation and differentiation. All of the activities were interlinked with each other and played significant roles in the scavenging of toxic free radicals. This study will help in the advancement of a regeneration protocol for B. rapa var. turnip and the understanding of the functions of antioxidative enzymes in plant differentiation.  相似文献   

9.
Chemical communication may inform about the location of prey, predators, co-specifics, and mate partners in zooplankton. In this study, we evaluated several life-history traits of the rotifer, Brachionus calyciflorus, exposed to conditioned media by a rotifer predator (Asplanchna brightwelli) and a cladocera competitor (Daphnia similis), quantifying population growth and life-table demography at two algal food levels (2.0 and 0.5 × 106 cells ml−1 of Chlorella pyrenoidosa). At both food levels, B. calyciflorus grown in predator-conditioned media had lower population abundance and slower population growth rate than controls. Conversely, the competitor-conditioned media treatments produced both higher rotifer population abundance and faster population growth rate than controls. Life-history parameters varied significantly depending on the presence of predator and competitor-conditioned media. The Asplanchna-conditioned media significantly decreased gross reproductive rate (GRR): 8–9 offsprings per female; net reproductive rate (R 0): 6–7 offsprings per female; population growth rate (r): 0.34–0.37 day−1; and increased generation time (T): 5.5–5.6 days. On the other hand, The Daphnia-conditioned media significantly increased the GRR (13–14 offsprings per female); net reproductive rate (8–9 offsprings per female); population growth rate (0.42–0.43 day−1); and decreased generation time (4.9–5.0 days). However, the effects of food level on the life-history characteristic were not significant in both treatments. Maximum values of the population abundance and the population growth rate are significantly influenced by the predator densities and pre-culture time. This study suggests that rotifers use variable life-history strategies (low reproduction and high survivorship versus high reproduction and low survivorship) based on the presence of predators and competitors.  相似文献   

10.
The effect of trace metal ions (Co2+, Cu2+, Fe2+, Mn2+, Mo6+, Ni2+, Zn2+, SeO4 and WO4 ) on growth and ethanol production by an ethanologenic acetogen, Clostridium ragsdalei was investigated in CO:CO2-grown cells. A standard acetogen medium (ATCC medium no. 1754) was manipulated by varying the concentrations of trace metals in the media. Increasing the individual concentrations of Ni2+, Zn2+, SeO4 and WO4 from 0.84, 6.96, 1.06, and 0.68 μM in the standard trace metals solution to 8.4, 34.8, 5.3, and 6.8 μM, respectively, increased ethanol production from 35.73 mM under standard metals concentration to 176.5, 187.8, 54.4, and 72.3 mM, respectively. Nickel was necessary for growth of C. ragsdalei. Growth rate (μ) of C. ragsdalei improved from 0.34 to 0.49 (day−1), and carbon monoxide dehydrogenase (CODH) and hydrogenase (H2ase)-specific activities improved from 38.45 and 0.35 to 48.5 and 1.66 U/mg protein, respectively, at optimum concentration of Ni2+. At optimum concentrations of WO4 and SeO4 , formate dehydrogenase (FDH) activity improved from 32.3 to 42.6 and 45.4 U/mg protein, respectively. Ethanol production and the activity of FDH reduced from 35 mM and 32.3 U/mg protein to 1.14 mM and 8.79 U/mg protein, respectively, upon elimination of WO4 from the medium. Although increased concentration of Zn2+ enhanced growth and ethanol production, the activities of CODH, FDH, H2ase and alcohol dehydrogenase (ADH) were not affected by varying the Zn2+ concentration. Omitting Fe2+ from the medium decreased ethanol production from 35.7 to 6.30 mM and decreased activities of CODH, FDH, H2ase and ADH from 38.5, 32.3, 0.35, and 0.68 U/mg protein to 9.07, 7.01, 0.10, and 0.24 U/mg protein, respectively. Ethanol production improved from 35 to 54 mM when Cu2+ was removed from the medium. The optimization of trace metals concentration in the fermentation medium improved enzyme activities (CODH, FDH, and H2ase), growth and ethanol production by C. ragsdalei.  相似文献   

11.
Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 μg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance.  相似文献   

12.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

13.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

14.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

15.
The kinetic and general growth features of Bacillus thuringiensis var. israelensis were evaluated. Initial glucose concentration (S 0) in fermentation media varied from 10 to 152 g/l. The results afforded to characterize four morphologically and physiologically well-defined culture phases, independent of S 0 values: Phase I, vegetative growth; Phase II, transition to sporulation; Phase III, sporulation; and Phase IV, spores maturation and cell lysis. Important process parameters were also determined. The maximum specific growth rates (μ X,m) were not affected with S 0 up to 75 g/l (1.0–1.1 per hour), but higher glucose concentrations resulted in growth inhibition by substrate, revealed by a reduction in μ X,m values. These higher S 0 values led to longer Phases III and IV and delayed sporulation. Similar biomass concentrations (X m = 15.2–15.9 g/l) were achieved with S 0 over 30.8 g/l, with increasing residual substrate, suggesting a limitation in some other nutrients and the use of glucose to form other metabolites. In this case, with S 0 from 30.8 to 152 g/l, cell yield (Y X/S ) decreased from 0.58 to 0.41 g/g. On the other hand, with S 0 = 10 g/l growth was limited by substrate, and Y X/S has shown its maximum value (0.83 g/g).  相似文献   

16.
Recently, the prenyltransferase SirD was found to be responsible for the O-prenylation of tyrosine in the biosynthesis of sirodesmin PL in Leptosphaeria maculans. In this study, the behavior of SirD towards phenylalanine/tyrosine and tryptophan derivatives was investigated. Product formation has been observed with 12 of 19 phenylalanine/tyrosine derivatives. It was shown that the alanine structure attached to the benzene ring and an electron donor, e.g., OH or NH2, at its para-position are essential for the enzyme activity. Modifications were possible both at the side chain and the benzene ring. Enzyme products from seven phenylalanine/tyrosine derivatives were isolated and characterized by MS and NMR analyses including HSQC and HMBC and proven to be O- or N-prenylated derivatives at position C4 of the benzene rings. K M values of six selected derivatives were found in the range of 0.10–0.68 mM. Catalytic efficiencies (K cat/K M ) were determined in the range of 430–1,110 s−1·M−1 with l-tyrosine as the best substrate. In addition, 7 of 14 tested tryptophan analogs were also accepted by SirD and converted to C7-prenylated derivatives, which was confirmed by comparison with products obtained from enzyme assays using a 7-dimethylallyltryptophan synthase 7-DMATS from Aspergillus fumigatus.  相似文献   

17.
Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require l-proline but not l-arginine for growth in a defined culture medium. All three strains could utilize l-ornithine as a proline source and contained l-ornithine aminotransferase and Δ1-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use l-arginine as a proline source and had l-arginase activity. The proline requirement also could be met by l-prolinamide, l-proline methyl ester, and the dipeptides l-alanyl-l-proline and l-leucyl-l-proline. The bacteria exhibited l-proline degradative activity as measured by the formation of Δ1-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of l-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller–Hinton broth. A membrane fraction from this strain had l-proline dehydrogenase activity as detected both by reaction of Δ1-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min−1 mg−1) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min−1 mg−1). A soluble fraction from this strain had Δ1-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min−1 mg−1) as determined by the NAD+-dependent oxidation of dl1-pyrroline-5-carboxylate. Addition of l-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with l-ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-dl-proline, dl-thiazolidine-2-carboxylate, and l-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.  相似文献   

18.
Fructooligosaccharides (FOS) production by Penicillium expansum was evaluated. In a first stage, the best conditions for P. expansum growth and sporulation were established with potato/dextrose/agar being the most suitable medium at between 22 and 25°C, giving good growth and good sporulation. The inocula from this medium were used for FOS production using shake-flask cultures, and yielded 0.58 g FOS/g sucrose (3.25 g FOS/l.h), demonstrating the potential of this strain for sucrose conversion to FOS.  相似文献   

19.
Controlled cultivation of marine macroalgal biomass such as Ulva species, notably Ulva lactuca, is currently studied for production of biofuels or functional food ingredients. In a eutrophic environment, this macrophyte is exposed to varying types of nutrient supply, including different and fluctuating levels of nitrogen sources. Our understanding of the influences of this varying condition on the uptake and growth responses of U. lactuca is limited. In this present work, we examined the growth response of U. lactuca exposed to different sources of nitrogen (NH4+; NO3; and the combination NH4NO3) by using photo-scanning technology for monitoring the growth kinetics of U. lactuca. The images revealed differential increases of the surface area of U. lactuca disks with time in response to different N-nutrient enrichments. The results showed a favorable growth response to ammonium as the nitrogen source. The NH4Cl and NaNO3 rich media (50 μM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% day−1 and 9.4 ± 0.72% day−1, respectively. The highest biomass production rate obtained was 22.5 ± 0.24 mg DW m−2·day−1. The presence of ammonium apparently discriminated the nitrate uptake by U. lactuca when exposed to NH4NO3. Apart from showing the significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca as exemplified by assessment of the growth response to two different N-sources.  相似文献   

20.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号