首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ribosome inactivating proteins (RIPs) of type 1 are plant toxins that eliminate adenine base selectively from the single stranded loop of rRNA. We report six crystal structures, type 1 RIP from Momordica balsamina (A), three in complexed states with ribose (B), guanine (C) and adenine (D) and two structures of MbRIP-1 when crystallized with adenosine triphosphate (ATP) (E) and 2'-deoxyadenosine triphosphate (2'-dATP) (F). These were determined at 1.67?, 1.60?, 2.20?, 1.70?, 2.07? and 1.90? resolutions respectively. The structures contained, (A) unbound protein molecule, (B) one protein molecule and one ribose sugar, (C) one protein molecule and one guanine base, (D) one protein molecule and one adenine base, (E) one protein molecule and one ATP-product adenine molecule and (F) one protein molecule and one 2'-dATP-product adenine molecule. Three distinct conformations of the side chain of Tyr70 were observed with (i) χ(1)=-66°and χ(2)=165° in structures (A) and (B); (ii) χ(1)=-95° and χ(2)=70° in structures (C), (D) and (E); and (iii) χ(1)=-163° and χ(2)=87° in structure (F). The conformation of Tyr70 in (F) corresponds to the structure of a conformational intermediate. This is the first structure which demonstrates that the slow conversion of DNA substrates by RIPs can be trapped during crystallization.  相似文献   

2.
Two new inorganic-organic hybrid polymers [ClBzQl]2[Cd(SCN)3.5Br0.5]·0.25H2O (1) and [ClBzMePy][Cd(SCN)3] (2) (ClBzQl = 1-(4′-Cl-benzyl)quinolinium cation and ClBzMePy = 1-(4′-Cl-benzyl)-2-methylpyridinium cation) have been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Crystal structure analyses show that two polymers belong to the monoclinic space group P2/n (1) and P21/c (2) with a = 18.548(2) Å, b = 9.526(1) Å, c = 20.689(2) Å, β = 94.008(1)°, V = 3646.6(5) Å3 for 1, and a = 11.195(2) Å, b = 16.415(3) Å, c = 10.751(2) Å, β = 102.930(3)°, V = 1925.7(7) Å3 for 2. The Cd atom exhibits a distorted octahedral coordination geometry for 1 and 2. For 1, a pair of 1,1-μ-SCN anions and a pair of 1,3-μ-SCN anions are alternately bridge adjacent Cd centers to form infinite polymeric chains. For 2, adjacent Cd atoms are linked by three 1,3-μ-SCN anions to form infinite [Cd(SCN)3] polymeric chains. The luminescent properties of the two polymers in the solid state at room temperature were investigated.  相似文献   

3.
The reaction of the organolutetium complex (CGC′)LuCl3Li2(THF), (1; CGC′ = [Me2Si(3-pyrrolidinyl-1-η5-indenyl)(tBuN)]2−) with NaN(TMS)2 provides a straightforward route to the halide-free organolutetium amido complex, (CGC′)LuN(TMS)2(THF) (2). These new complexes were characterized by standard analytical methodology. The monomeric complex 2 crystallizes in the monoclinic space group P21/c with four molecules in a cell of dimensions a = 11.1566(6) Å, b = 14.9805(8) Å, c = 22.18007(12) Å, and β = 90.0620(10)°. Complex 2 is an active precatalyst for the intramolecular hydroamination/cyclization of representative aminoalkenes with turnover frequencies as high as 205 h−1 at room temperature.  相似文献   

4.
The syntheses, structures, and magnetic properties of two new μ-alkoxo-μ-pyrazolato heterobridged compounds, [Cu II2(L1-F)(μ-prz)] (1) and [Cu II2(L1-2OMe) (μ-prz)] · 0.5 CH3CN (2) (prz=pyrazolato; H2L1-F=1,3-bis(3-fluorosalicylideneamino)-2-propanol; H2L1-2OMe=1,3-bis(4,6-dimethoxy salicylideneamino)-2-propanol) have been reported. Compound 1 crystallizes in triclinic space group with a=8.6392(10) Å, b=10.6431(9) Å, c=11.6809(13) Å, α=85.972(8)°, β=71.492(9)°, and γ=72.221(9)°, while the unit cell parameters of 2 are as follows: space group: monoclinic C2/c, a=28.2948(5) Å, b=7.3033(2) Å, c=26.3933(5) Å, and β=96.243(1)°. The variable-temperature magnetic susceptibility measurements reveal that the metal centers in both the compounds are antiferromagnetically coupled with J=−200 cm−1 for 1 and J=−175 cm−1 for 2. The magnetic behaviors have been explained on the basis of two opposing factors, complementarity and countercomplementarity of magnetic orbitals.  相似文献   

5.
The aqueous solution behaviour of the equilibrium related cis-[PdCl2(PTA)2] and [PdCl(PTA)3]Cl complexes has been investigated in the presence of acid and iodide ions. Several of the resulting species were identified and a reaction scheme accounting for identified complexes is proposed. The crystal structures of trans-[PdI2(PTA-H)2][PdI3(PTA)]2 · 2H2O (1) (PTA-H+ = protonated form of PTA) and trans-[PdI2(PTA)2] (2) are reported. The geometry around the Pd(II) metal centre in 1 (for both the cation and anion) and 2 is distorted square planar. The PTA ligands occupy a trans orientation in the cation of 1 and in complex 2. Compound 1 represents a rare example of a Pd(II) system wherein the cation:anion pair, in a 1:2 ratio, are both coordination complexes. It is the first d8 Ni-triad square planar complex containing only one PTA ligand and only the second platinum group metal complex. For the cation in 1, the bond distances and angles are Pd(1)-P(1) = 2.2864(16) Å, Pd(1)-I(1) = 2.6216(7) Å, P(1)-Pd(1)-P(1)′ = 180.00(7)° and P(1)-Pd(1)-I(1) = 87.62(4)°, while in the anion the bond distances are Pd(2)-P(2) = 2.2377(15) Å, Pd(2)-I(4) = 2.5961(13) Å, Pd(2)-I(2) = 2.6328(13) Å, Pd(2)-I(3) = 2.6513(8) Å, while the angles are P(2)-Pd(2)-I(4) = 90.00(5)°, P(2)-Pd(2)-I(2) = 89.69(5)°, I(4)-Pd(2)-I(2) = 179.57(2)°, P(2)-Pd(2)-I(3) = 175.19(4)°, I(4)-Pd(2)-I(3) = 90.29(4)° and I(2)-Pd(2)-I(3) = 90.05(4)°. Bond distances and angles of the coordination polyhedron in 2 are Pd-P = 2.327(3) Å, Pd-I = 2.5916(10) Å, P-Pd-I = 89.13(7)° and P-Pd-P = 180.00(13)°. The average effective- and Tolman cone angles for the two ligands, calculated from the crystallographic data, are 115° and 117° for PTA and PTA-H, respectively.  相似文献   

6.
The hydrothermal reaction of CuBr2 and tpyprz in the presence of NH4VO3 and HF for 72 h at 170 °C provided [(tpyprz)3Cu10Br10] (1) in 20% yield. The two-dimensional structure of 1 may be described as Cu(I)-tpyprz chains, linked through {Cu4Br5} clusters in the ac-plane and decorated with {Cu3Br5}2− clusters projecting from one face of the layer in the b-direction. The Cu(I) sites exhibit distorted trigonal coordination {CuBr3} and distorted tetrahedral geometries, {CuBr2N2} and {CuN4}. Crystal data for 1: monoclinic space group C2, a = 12.7561(8) Å, b = 19.359(1) Å, c = 15.860(1) Å, β = 97.178(1)°, V = 3885.8(4) Å3, Z = 2, Dcalc = 2.222 g cm−3, μ(Mo Kα) = 78.75 cm−1.  相似文献   

7.
An asymmetric single EO azido bridged dinuclear copper(II) complex, [Cu2(dmterpy)2(μ-1,1-N3)(N3)2] · NO3 · (H2O)21 [dmterpy = 5,5″-dimethyl-2,2′:6′,2″-terpyridine], and a double EO azido bridged dinuclear nickel(II) complex, [Ni2(pbdiim)4(μ-1,1-N3)2] · 2(N3) · 6(H2O) 2 [pbdiim = 2-(2′-pyridyl)benzo[1,2-d:4,5-d′]diimidazole], have been synthesized and characterized structurally and magnetically. Compound 1 consists of a single EO azido bridged CuII dimer in which each CuII ion is five-coordinated in the form of a distorted square-based pyramid. The N(μ−1,1) atom holds on the apical position of one CuII pyramid with an elongated bond length of 2.305 Å and on the basal plane of another distorted CuII pyramid with a bond length of 1.991 Å. The Cu-N(μ−1,1)-Cu angle is 117.4 (2)°. The copper(II) dimer forms a 1 D zig-zag chain via hydrogen bondings between azide ions, water molecules and the nitrate anion. Compound 2 consists of a double EO azido bridged NiII dimer with the Ni-N(μ−1,1)-Ni bond angle of 102.96 (13)°. The coordination geometry of NiII is octahedral. Their magnetic properties have been measured in the range from 300 to 2 K and correlated with the molecular structures. Compound 1 shows weak ferromagnetic interactions within the copper(II) dimer (J = 2.88 cm−1), despite the large EO azide bridge angle (117.4 (2)°). The intramolecular coupling between the NiII (S = 1) ions in compound 2 was found to be ferromagnetic (J = 27.87 cm−1).  相似文献   

8.
The role of relativistic effects (RE) in the structures of Cd(II) complexes with crown ethers, and the reason the ‘soft’ Cd(II) strongly prefers to bind to SCN through N, are considered. The synthesis and structures of [Cd(18-crown-6)(thiourea)2] (ClO4)2.18-crown-6 (1) and [Cd(Cy2-18-crown-6)(NCS)2] (2) are reported. (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; Cy2-18-crown-6 = cis-anti-cis-2,5,8,15,18,21-hexaoxatricylo[20.4.0.0(9,14)]hexacosane). In 1 Cd is coordinated in the plane of the crown which has close to D3d symmetry, with long Cd-O bonds averaging 2.688 Å. The two thiourea molecules form relatively short Cd-S bonds that average 2.468 Å, with an S-Cd-S angle of 164.30°. This structure conforms with the idea that Cd(II) can adopt a near-linear structure involving two covalently-bound donor atoms (the S-donors) with short Cd-S bonds, which resembles gas-phase structures for species such as CdCl2. The structure of 2 is similar, with the two SCN ligands N-bonded to Cd, with short Cd-N bonds of 2.106 Å, and N-Cd-N angle of 180°. The crown in 2 forms long Cd-O bonds that average 2.698 Å. Molecular mechanics calculations suggest that a main reason Cd(II) prefers to bind to SCN through N is that when bound through S, the small Cd-S-C angle, which is typically close to 100°, brings the ligand into close contact with other ligands present, and causes steric destabilization. In contrast, the Cd-N-C angles for SCN coordinated through N are much larger, being 171.4° in 2, which keeps the SCN groups well clear of the crown ether. DFT (density functional theory) calculations are used to generate the structures of [Cd(18-crown-6)(H2O)2]2+ (3) and [Cd(18-crown-6)Cl2] (4). In 3, the Cd(II) is bound to only three O-donors of the macrocycle, with Cd-O bonds averaging 2.465 Å. The coordinated waters form an O-Cd-O angle of 139.47°, with Cd-O bonds of 2.295 Å. In contrast, for 4, the Cd is placed centrally in the cavity of the D3d symmetry crown, with long Cd-O bonds averaging 2.906 Å. The Cl groups form a Cl-Cd-Cl angle of 180°, with short Cd-Cl bonds of 2.412 Å. With ionically bound groups on the axial sites of[Cd(18-crown-6)X2] complexes, such as with X = H2O in 3, the Cd(II) does not adopt linear geometry involving the two X groups, with long Cd-O bonds to the O-donors of the macrocycle. With covalently-bound X = Cl in 4, short Cd-Cl bonds and a linear [Cl-Cd-Cl] unit results, with long Cd-O bonds to the crown ether.  相似文献   

9.
Two new one-dimensional azido-bridged chiral copper(II) coordination polymers, [(μ-1,1,3-N3)2{Cu2(R-L)2(N3)2}]n (1) (R-L = R-2-(N-(2-hydroxybutyl)carbaldimino) pyridine) and [(μ-1,1,3-N3)2{Cu2(S-L)2(N3)2}]n (2) (S-L = S-2-(N-(2-hydroxybutyl)carbaldimino)pyridine) have been synthesized and structurally characterized. Complexes 1 and 2 crystallize in the monoclinic chiral space group P21. For 1, with a = 6.9565(17) Å, b = 20.675(5) Å, c = 9.859(2) Å, β = 105.944(5)° and Z = 2. In the case of compound 2, a = 6.9650(17) Å, b = 20.705(5) Å, c = 9.878(2) Å, β = 105.941(4)° and Z = 2. Both complexes consist of one-dimensional chiral structures in which the copper(II) ions with a distorted octahedral geometry are interlinked by the unusual μ-1,1,3 azido ligands. Circular dichroism spectra demonstrate that 1 and 2 are a pair of enantiomers. Their magnetic properties have been studied. Fitting of the susceptibility data for 1 and 2 using the Bleany-Bowers expression derived from the isotropic spin-exchange Hamiltonian H = −2JS1S2 leads to the parameters g = 2.21, J = −2.06 cm−1, zJ′ = −0.0309 cm−1 and R = 4.0 × 10−4.  相似文献   

10.
By varying the solvents and temperatures under solvothermal conditions, two new magnesium based coordination networks were synthesized using 2,5-thiophenedicarbxoylate as a linker. Mg3(TDC)3(DMF)3 [1; TDC = 2,5 thiophenedicarboxylate; space group P21/c, a = 17.747(4) Å, b = 9.805(2) Å, c = 21.359(4) Å, β = 103.13(3)°] is constructed by a combination of magnesium polyhedral trimers, which are connected by the TDC2− linkers to form a 3-D network. Coordinated DMF molecules are present within the channels. Mg(TDC)(H2O)2 [2; space group Pnma, a = 7.296(4) Å, b = 17.760(4) Å, c = 6.6631(3) Å] is formed by 1-D chains of magnesium octahedra connected by the TDC2− linker. Water molecules are coordinated at the axial positions of the magnesium octahedra. Compound 1 is formed using DMF as the synthesis solvent at 180 °C, while compound 2 is formed using ethanol as the synthesis solvent at 100 °C. Both compounds show enhanced photoluminescence intensity when excited at 397 nm compared to the free TDC ligand, suggesting a charge transfer between the ligand and the magnesium metal center.  相似文献   

11.
Ring coupled bimetallic derivatives (μ-η5:5-C5H4C5H4)[Nb(CO)4]2 and [μ-CH25-C5H4)2][M(CO)4]2, where M = Nb and Ta have been prepared. The molecular structures of the latter two compounds have been determined: , triclinic, , a = 8.028(2) Å, b = 11.414(1) Å, c = 12.711(2) Å, α = 75.020(8)°, β = 80.34(2)°, γ = 79.46(2)°, V = 1097.3(4) Å3, Z = 2, R(F) = 2.79%; [μ-CH25-C5H4)2][Ta(CO)4]2, triclinic, , a = 7.815(3) Å, b = 10.275(4) Å, c = 13.135(4) Å, α = 104.25(3)°, β = 100.26(4)°, γ = 96.86(3)°, V = 991.2(6) Å3, Z = 2, R(F) = 3.00%.  相似文献   

12.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

13.
Several new mononuclear and dinuclear ruthenium(II) complexes - incorporating 2,2′:6′,2″-terpyridine and acetylacetonate as ancillary ligands and phenylcyanamide derivative ligands - of the type [Ru(tpy)(acac)(L)] and [{Ru(tpy)(acac)}2(μ-L′)] (where tpy = 2,2′:6′,2″-terpyridine, acac = acetylacetonate, L = hmbpcyd = 4-(3-hydroxy-3-methylbutynyl)phenylcyanamide anion (2) and epcyd = 4-ethynylphenylcyanamide anion (3) and L′ = bcpda = bis(4-cyanamidophenyl)diacetylene dianion (4) and bcpea = 9,10-bis(4-cyanamidophenylethynyl)anthracene dianion (5)) were synthesized in a stepwise manner starting from [Ru(tpy)(acac)(Ipcyd)] (1), where Ipcyd = 4-iodophenylcyanamide anion. Tetraphenylarsonium salts of the phenylcyanamide derivative ligands were also prepared. The four complexes have been characterized by UV-Vis, IR, ES-MS, electrochemistry and 1H NMR. Mononuclear complexes 2 and 3 were further characterized by 13C NMR. The single crystal X-ray structure of 2 was determined, it crystallized with one molecule of water with empirical formula of C32H31N5O5Ru, in a monoclinic crystal system and space group of P21/n with a = 17.642(5) Å, b = 9.634(2) Å, c = 20.063(7) Å, β = 92.65(3)°, V = 3406(2) Å3 and Z = 4. The structure was refined to a final R factor of 0.040. The Ru(III/II) couple of 1-3 appeared around 0.34 V versus the saturated calomel electrode in dimethylformamide and at a slightly higher potential, around 0.36-0.37 V for 4 and 5. Spectroelectrochemical studies were also performed for 4 and 5, no intervalence transition was observed despite all attempts.  相似文献   

14.
Reaction of fresh Mn(OH)2 precipitate and S-carboxymethyl-l-cysteine (H2SCMC) in aqueous solution afforded a novel chiral 3D coordination polymer Mn(H2O)(SCMC) 1, which crystallizes in the acentric polar space group P21 with cell constants = 5.079(1) Å, = 9.617(2) Å, = 8.649(2) Å, β = 94.40(3)°, = 421.2(1) Å3, = 2, and exhibit a SHG effect and ferroelectricity (a remnant polarization Pr = 0.0159 uC cm−2, coercive field Ec = 0.83 kV cm−2, saturation of the spontaneous polarization Ps = 0.234 uC cm−2). To the best of our knowledge, the present compound represents the first example of S-carboxymethyl-l-cysteine coordination polymers that exhibit possible ferroelectric behavior. The structural analysis revealed that the Mn2+ ions in 1 are each coordinated by one N atom and five O atoms of four S-carboxymethyl-l-cysteine ligand bridges four symmetry-related Mn2+ ions to form 3D MOF of 66 topology type with irregular chiral channels extending along [1 0 0]. The temperature-dependent magnetic susceptibilities shows that 1 obeys Curie-Weiss law χm = C/(T − Θ) with C = 4.23 cm3 mol−1 K and Θ = −5.86 K and the best fit gave a weak antiferromagnetic coupling (J = −0.282(5) cm−1) among Mn ions.  相似文献   

15.
Diflorasone diacetate, a steroid anti-inflammatory drug (marketed as Diacort® or Florone® by Pfizer) and used in the treatment of skin disorders, can be prepared as anhydrous form, DD1 (as deposited in the US pharmacopoeia), or as a monohydrated phase, DDW. Heating the DDW form above 90 °C, a mixture of DD1 and of a new anhydrous polymorph, DD2 is obtained. Further heating of this mixture, or of pure DD1, up to 230 °C (only a few degrees before melting!), generates an elusive anhydrous DD3 polymorph. Their crystal structures, determined uniquely from laboratory powder diffraction data, show the isomorphous character of the DDW and DD1 forms, while the DD2 and DD3 polymorphs crystallize with markedly different unit cells. Crystals of the DD1, DD2 and DDW forms are orthorhombic, P212121, a = 29.386(1) Å; b = 10.4310(9) Å, c = 8.1422(7) Å, V = 2495.8(3) Å3 for DD1; a = 15.2639(10) Å; b = 11.7506(7) Å, c = 13.8931(11) Å, V = 2491.9(3) Å3 for DD2; a = 30.311(2) Å; b = 10.6150(9) Å, c = 7.9337(7) Å, V = 2552.7(4) Å3 for DDW; while the lattice parameters for the monoclinic P21DD3 species are a = 11.5276(10) Å; b = 13.8135(11) Å, c = 7.8973(7) Å, β = 103.053(6)°, V = 1225.0(2) Å3. These compounds have also been fully characterized by thermo analytical methods, as well by 13C, 19F, and 1H NMR spectroscopy.  相似文献   

16.
This work reports the synthesis, characterization, and aqueous chemistry of a series of cytotoxic [Au(polypyridyl)Cl2]PF6 complexes {(where polypyridyl = dipyrido[3,2-f:2′,3′-h] quinoxaline (DPQ), dipyrido[3,2-a:2′,3′-c] phenazine (DPPZ) and dipyrido[3,2-a:2′,3′-c](6,7,8,9-tetrahydro) phenazine (DPQC))}. The crystal structure of [Au(DPQ)Cl2]PF6 was determined as example of the series and exhibits the anticipated square planar geometry common for d8 coordination complexes. The crystals of the complex belong to the space group P21/n with a = 7.624(2) Å, b = 18.274(5) Å, c = 14.411(14) Å, β = 98.03(3)°, and Z = 4. In 1H NMR studies of these compounds in the presence of aqueous buffer, all four complexes rapidly converted to the dihydroxy species [Au(polypyridyl)(OH)2] in a stepwise fashion. However, the [Au(polypyridyl)]3+ fragment believed to impart cytotoxicity in human ovarian cancer cell lines (A2780) remained intact and appeared stable for days. It was also noted that these Au(III) complexes were readily reduced in the presence of the common biological reducing agents, reduced glutathione and sodium ascorbate. How solution and redox stability may affect the biological activity of these novel Au(III) complexes is discussed.  相似文献   

17.
An increasing attention has been dedicated to the characterization of complex networks within the protein world. Before now most investigations about protein structures were only considered where the interactive cutoff distance Rc=5 or 7 Å. It is noteworthy that the length of peptide bond is about 1.5 Å, the length of hydrogen bond is about 3 Å, the range of London-van der Waals force is about 5 Å and the range of hydrophobic effect can reach to 12 Å in protein molecule. Present work reports a study on the topological properties of the amino acid network constructed by different interactions above. The results indicate that the small-world property of amino acid network constructed by the peptide and hydrogen bond, London-van der Waals force and the hydrophobic effect is strong, very strong and relatively weak, respectively. Besides, there exists a precise exponential relation Ck−0.5 at Rc=12 Å. It means that the amino acid network constructed by the hydrophobic effect tend to be hierarchical. Functional modules could be the cause for hierarchical modularity architecture in protein structures. This study on amino acid interactive network for different interactions facilitates the identification of binding sites which is strongly linked with protein function, and furthermore provides reasonable understanding of the underlying laws of evolution in genomics and proteomics.  相似文献   

18.
Experimental studies of the binding interactions of [CuL(NO3)] and [{CuL′(NO3)}2] (HL = pyridine-2-carbaldehyde thiosemicarbazone, and HL′ = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) with adenine, guanine, cytosine, thymine and their mononucleotides (dNMP), 2-deoxyadenosine-5′-monophosphate, (dAMP), 2′-deoxyguanosine-5′-monophosphate, (dGMP), 2′-deoxycytidine-5′-monophpsphate (dCMP), and thymidine-5′-monophosphate (dTMP) have been carried out in aqueous solution at pH 6.0, I = 0.1 M (NaClO4) and T = 25 °C. The complexation constants of these compounds, calculated by Hildebrand-Benesi plots for the dye binding, D, ([CuL] or [CuL′]) to the nucleobases or nucleotides (P), have shown two linear stretches in adenine, guanine, dAMP and dGMP. The data were analyzed in terms of formation of 1:1 DP and 1:2 DP2 complexes with increasing purine base or nucleotide content. For cytosine and dCMP only 1:1 complexes have been observed, whereas for thymine and dTMP such complex structures were not observed. The [CuL(Hcyt)](ClO4) cytosine derivative has been isolated and characterized. The crystal structure consists of perchlorate ions and [CuL(Hcyt)]+ monomers attached by hydrogen bond, chelate π−ring and anion-π interactions. The Cu2+ ions bind to the NNS chelating moiety of the thiosemicarbazone ligand and the cytosine N13 site (N3, most common notation) yielding a square-planar geometry. A pseudocoordination to the cytosine O12 site (=O2) can also be considered.  相似文献   

19.
Two Ni(II) complexes of the dianionic ligands, Mebpb2−, [H2Mebpb = N,N′-bis(pyridine-2-carboxamido)-4-methylbenzene] and Mebqb2−, [H2Mebqb = N,N′-bis(quinoline-2-carboxamido)-4-methylbenzene] have been synthesized and characterized by elemental analyses, IR, and UV-Vis spectroscopy. The crystal and molecular structures of [Ni(Mebpb)], (1), and [Ni(Mebqb)], (2), were determined by X-ray crystallography. Both complexes exhibit distorted square-planar NiN4 coordination figures with two short and two long Ni-N bonds (Ni-N ∼1.84 and ∼1.95 Å, respectively). The electrochemical behavior of these complexes with the goal of evaluating the structural effects on the redox properties has been studied.  相似文献   

20.
The first organically templated molybdenum iodates (C5H6N)2Mo2O5(IO3)4(H2O)2 (1), (C10H8N2)[MoO2(IO3)3] · H3O (2), and uranium iodate (C5H5N)2[(UO2)(IO3)3](IO3) (3), have been successfully synthesized under mild hydrothermal conditions. Compound 1 is simple zero-dimensional units consisting of [(Mo2O5(IO3)4)]2− anions, which can be described as a tetranuclear unit hanged on either side by two [IO3] groups. The [Mo2O5(IO3)4]2− anions are in a close connection through the water molecules and protonated pyridine cations, via hydrogen bonds and intermolecular actions. Compound 2 is built up from [MoO6] octahedra and [IO3] pyramids to two-dimensional layers, in which 4,4′-bipy molecules and water cations are located, forming strong hydrogen bonds with the inorganic framework, leading to pseudo three-dimensional structure. Compound 3 is one-dimensional ribbons containing {[(UO2)(IO3)3](IO3)}2− anions and charge neutrality is achieved by the protonated 4,4′-bipy cations, which reside between two ribbons, forming hydrogen bonds with the inorganic framework and resulting in pseudo two-dimensional structure. Crystal data are as follows: (C5H6N)2Mo2O5(IO3)4(H2O)2 (1), orthorhombic, Pnma, a = 24.097(5) Å, b = 13.532(3) Å, c = 7.836(16) Å, Z = 4, V = 2555.2(9) Å3; (C10H8N2)[MoO2(IO3)3] · H3O (2), monoclinic, C2/c, a = 24.176(5) Å, b = 10.751(2) Å, c = 7.5074(15) Å, β = 107.44(3)°, Z = 8, V = 1861.6(6) Å3; (C5H5N)2[(UO2)(IO3)3](IO3) (3), monoclinic, P21/n, a = 14.430(3) Å, b = 7.3459(15) Å, c = 19.811(4) Å, β = 106.70(3)°, Z = 4, V = 2011.3(7) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号