首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SCO protein from the aerobic bacterium Bacillus subtilis (BsSCO) is involved in the assembly of the cytochrome c oxidase complex, and specifically with the Cu(A) center. BsSCO has been proposed to play various roles in Cu(A) assembly including, the direct delivery of copper ions to the Cu(A) site, and/or maintaining the appropriate redox state of the cysteine ligands during formation of Cu(A). BsSCO binds copper in both Cu(II) and Cu(I) redox states, but has a million-fold higher affinity for Cu(II). As a prerequisite to kinetic studies, we measured equilibrium stability of oxidized, reduced and Cu(II)-bound BsSCO by chemical and thermal induced denaturation. Oxidized and reduced apo-BsSCO exhibit two-state behavior in both chemical- and thermal-induced unfolding. However, the Cu(II) complex of BsSCO is stable in up to nine molar urea. Thermal or guanidinium-induced unfolding of BsSCO-Cu(II) ensues only as the Cu(II) species is lost. The effect of copper (II) on the folding of BsSCO is complicated by a rapid redox reaction between copper and reduced, denatured BsSCO. When denatured apo-BsSCO is refolded in the presence of copper (II) some of the population is recovered as the BsSCO-Cu(II) complex and some is oxidized indicating that refolding and oxidation are competing processes. The proposed functional roles for BsSCO in vivo require that its cysteine residues are reduced and the presence of copper during folding may be detrimental to BsSCO attaining its functional state.  相似文献   

2.
Bruce C. Hill  Diann Andrews 《BBA》2012,1817(6):948-954
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the CuA center contained within subunit II of the oxidase complex. The CuA center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a3 and CuB. CuA consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of CuA present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in CuA assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-CuA site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

3.
Bennett B  Hill BC 《FEBS letters》2011,585(6):861-864
The Bacillus subtilis version of SCO1 (BsSCO) is required for assembly of Cu(A) in cytochrome c oxidase and may function in thiol-disulfide exchange and/or copper delivery. BsSCO binds Cu(II) with ligation by two cysteines, one histidine and one water. However, copper is a catalyst of cysteine oxidation and BsSCO must avoid this reaction to remain functional. Time resolved, rapid freeze-quench (RFQ) electron paramagnetic resonance of apo-BsSCO reacting with Cu(II) reveals an initial Cu(II) species with two equatorially coordinated nitrogen atoms, but no sulfur. We propose that BsSCO evolves from this initial sulfur free coordination of Cu(II) to the final dithiolate species via a change in conformation, and that the initial binding by nitrogen is a means for BsSCO to avoid premature thiol oxidation.  相似文献   

4.
N-Aryl-N′-hydroxyguanidines are compounds that display interesting pharmacological properties but their chemical reactivity remains poorly investigated. Some of these compounds are substrates for the heme-containing enzymes nitric-oxide synthases (NOS) and act as reducing co-substrates for the copper-containing enzyme Dopamine β-Hydroxylase (DBH) [P. Slama, J.L. Boucher, M. Réglier, Biochem. Biophys. Res. Commun. 316 (2004) 1081-1087]. DBH catalyses the hydroxylation of the important neurotransmitter dopamine into norepinephrine in the presence of both molecular oxygen and a reducing co-substrate. Although many molecules have been used as co-substrates for DBH, their interaction at the active site of DBH and their role in mechanism are not clearly characterized. In the present paper, we have used a water-soluble copper-N3S complex that mimics the CuB site of DBH, and aromatic N-hydroxyguanidines as reducers to address this question. N-Aryl-N′-hydroxyguanidines readily reduced copper(II) to Cu(I) and were oxidized into a nitrosoamidine as previously observed in reactions performed with purified DBH. These data describe for the first time the reactivity of N-aryl-N′-hydroxyguanidines with a water-soluble copper(II) complex and help to understand the interaction of co-substrates with copper at the active site of DBH.  相似文献   

5.
The Synthesis of Cytochrome Oxidase protein, or SCO protein, is required for the assembly of cytochrome c oxidase in many mitochondrial and bacterial respiratory chains. SCOs have been proposed to deliver copper to the CuA site of cytochrome c oxidase. We have reported that Bacillus subtilis SCO (i.e., BsSCO) binds Cu(II) with high-affinity via a two-step process mediated by three conserved residues (i.e., two cysteines and one histidine, or the CCH motif). A remarkable feature in the reaction of reduced (i.e., di-thiol) BsSCO with copper is that it does not generate any of the disulfide form of BsSCO. This molecular aversion is proposed to be a consequence of a binding mechanism in which the initial copper complex of BsSCO does not involve cysteine, but instead involves nitrogen ligands. We test this proposal here by constructing two isomers of BsSCO in which the conserved copper binding residues (i.e., the CCH-motif) are retained, but their positions are altered. In these variants the two cysteines are exchanged with histidine, and both react transiently with copper (II) with distinct kinetic profiles. The reaction generates Cu(I) and the protein is oxidized to its disulfide form. EPR analysis supports a copper binding model in which cysteine, which is at the “histidine position” in the mutant, is part of an initial encounter complex with copper. When cysteine is the initial ligating residue an oxidation reaction ensues. In contrast initial binding to native BsSCO uses nitrogen-based ligands, and thereby avoids the opportunity for thiol oxidation.  相似文献   

6.
CuA is a binuclear copper center that functions as an electron transfer agent, cycling between a reduced Cu(I)Cu(I) state and an oxidized mixed-valence Cu(+1.5)···Cu(+1.5) state. The copper ions are bridged by two cysteine thiolate ligands and form a copper–copper bond, the first reported of its kind in Nature. Such a “diamond-core” Cu2S(Cys)2 structure allows an unpaired electron to be completely delocalized over the two copper ions and contributes to its highly efficient electron transfer properties. This review provides accounts of how the CuA center was structurally characterized and highlights its salient spectroscopic properties. In the process, it introduces the CuA center in four different systems—native protein systems, soluble protein truncates of native proteins, synthetic models using organic molecules, and biosynthetic models using proteins as ligands—with a greater emphasis on biosynthetic models of CuA, especially on new, deeper insights gained from their studies.  相似文献   

7.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

8.
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

9.
New copper(II) complexes of general empirical formula, [Cu(NNS)X] (NNS = anionic forms of the 2-acetylpyrazine Schiff bases of S-methyl- and S-benzyldithiocarbazate, Hapsme and Hapsbz) and X = Cl, Br, NCS and NO3 have been synthesized and characterized. X-ray crystal structures of the free ligand, Hapsbz and the complexes, [Cu(apsbz)(NO3)], [Cu(apsme)(NCS)]2 and [Cu(apsme)Cl]2 have been determined. In the solid state, the Schiff base, Hapsbz remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. X-ray diffraction shows that the [Cu(apsbz)(NO3)] complex is a novel coordination polymer in which one of the nitrogen atoms of the pyrazine ring bridges two adjacent copper(II) ions. The Schiff base is coordinated to the copper(II) ion in its iminothiolate form via the thiolate sulfur atom, the azomethine nitrogen atom and one of the pyrazine nitrogen atoms, the overall geometry of each copper atom in the polymer being close to a square-pyramid. The complexes, [Cu(apsme)X]2 (X = NCS, Cl) are dimers in which each copper atom adopts a five-coordinate near square-pyramidal geometry with an N3S2 coordination environment. The Schiff base coordinates as a uninegatively charged tridentate ligand chelating via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atoms. A nitrogen atom of a unidentate thiocayanate or chloride ligand and a bridging sulfur atom from a second ligand completes the coordination sphere. Room temperature μeff values for the complexes in the solid state are in the range 1.70-2.0 μB typical of uncoupled or weakly coupled Cu(II) centres. Variable temperature susceptibility studies show that the chain complex displays weak ferromagnetic coupling across the pyrazine bridges, while the S-bridged dinuclear compounds display either weak ferromagnetic or weak antiferromagnetic coupling that relates to subtle bridging geometry differences. EPR studies of frozen DMF solutions give rather similar g and ACu values for all compounds indicative of Cu(dx2-y2) ground state orbitals on the Cu centers.  相似文献   

10.
A two-dimensional copper(II) polymer with formula of [Cu2(dmapox)(pic)2]n · nCH3OH, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and pic is picrate, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectra studies. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. It crystallizes in monoclinic, space group P21/c with crystallographic data: a = 14.076(7) Å, b = 13.896(7) Å, c = 9.278(5) Å, β = 106.909(6)° and Z = 2. The structure consists of uncoordinated methanol molecules and two-dimensional copper(II) polymeric coordination network constructed by the bis-tridentate trans-dmapox and tridentate picrate ligands. The environment around the copper(II) atom can be described as a distorted octahedron and the Cu?Cu separations through μ-trans-oxamidate and μ2-picrate bridges are 5.227 Å and 8.359 Å, respectively. The copper(II) complex presents as a polymer in solid state, whereas in solution it presents as discrete neutral binuclear copper(II) species [Cu2(dmapox)(pic)2] due to the weak interactions between the copper(II) atoms and the para-nitro oxygens of the adjacent picrate ligands. The fluorescence titration and the ethidium bromide (EB) fluorescence displacement experiments reveal that the binding mode between the binuclear copper(II) complex [Cu2(dmapox)(pic)2] and Herring Sperm DNA might be intercalation.  相似文献   

11.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

12.
Several features of the catalytic oxidation of cysteine by ceruloplasmin and nonenzymic Cu(II) at pH 7 have been compared. The oxidation of cysteine by ceruloplasmin has several properties in common with the Cu(II) catalyzed oxidation of cysteine: pH maxima, thiol specificity, lack of inhibition by anions, and high sensitivity to inhibition by copper complexing reagents. These two catalysts differed in their molecular activity, in their ability to oxidize penicillamine and thioglycolate, and in that H2O2 was produced as a primary product only during Cu(II) oxidation. The oxidation of cysteine by ceruloplasmin was compared also with the ceruloplasmin catalyzed oxidation of o-dianisidine, a classical pH 5.5 substrate. The mechanism of the oxidation of cysteine by ceruloplasmin at pH 7 differed from that of o-dianisidine oxidation because the latter substrate was inhibited by anions but not by copper complexing agents. Spectral and other data suggest that during the ceruloplasmin reaction with cysteine there is a one electron transfer from cysteine to ceruloplasmin resulting in the specific reduction of type lb Cu(II).  相似文献   

13.
The synthesis and crystal structure of four new copper(I) and copper(II) supramolecular amine, and amine phosphonate, complexes is reported. Reaction of copper(I) with 2-,9-dimethyl-1-10-phenanthroline (dmp) produced a stable 4-coordinate Cu(I) species, [Cu(I)(dmp)2]Cl · MeOH · 5H2O (2), i.e., the increased steric hindrance in the ‘bite’ area of dmp did not prevent interaction with the metal and provided protection against oxidation which was not possible for the phen analogue [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36]. Subsequent addition of phenylphosphonic acid to (2) produced two structures from alternative synthetic routes. An ‘in situ’ process yielded red block Cu(I) crystals, [Cu(I)(dmp)2] · [C6H5PO3H2 · C6H5PO3H] (4), whilst recrystallisation of (2) prior to addition of the acid (‘stepwise’ process) produced a green, needle-like Cu(II) complex, [Cu(II)(dmp) · (H2O)2 · C6H5PO2(OH)] [C6H5PO2(OH)] (3). However, addition of excess dmp during the ‘stepwise’ process forced the equilibrium towards product (4) and resulted in an optimum yield (99%). The structure of (4) was similar to the phen analogue, [Cu(II)Cl(phen)2] · [C6H5PO2(OH) · C6H5PO(OH)2] (1) [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36], but the presence of dmp exerted some influence on global packing, whilst (3) exists as a polymeric layered material. In contrast, reaction of copper(I) with di-2-pyridyl ketone (dpk), followed by phenylphosphonic acid produced purple/blue Cu(II) species, [Cu(II)(dpk · H2O)2] Cl2 · 4H2O (5), and [Cu(II)(dpk · H2O)2] · [C6H5PO2(OH)2 · C6H5PO(OH)2] (6), respectively, i.e., in both cases oxidation of copper occurred. Solid-state luminescence was observed in (2) and (4). The latter showing a 5-fold enhancement in intensity.  相似文献   

14.
CzcE is encoded by the most distal gene of the czc determinant that allows Cupriavidus metallidurans CH34 to modulate its internal concentrations of cobalt, zinc and cadmium by regulation of the expression of the efflux pump CzcCBA. We have overproduced and purified CzcE. CzcE is a periplasm-located dimeric protein able to bind specifically 4 Cu-equivalent per dimer. Spectrophotometry and EPR are indicative of type II copper with typical d-d transitions. Re-oxidation of fully reduced CzcE led to the formation of an air stable semi-reduced form binding both 2 Cu(I) and 2 Cu(II) ions. The spectroscopic characteristics of the semi-reduced form are different of those of the oxidized one, suggesting a change in the environment of Cu(II).  相似文献   

15.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus.  相似文献   

16.
 The unfolding of oxidized and reduced azurin by guanidine hydrochloride has been monitored by circular dichroism. Dilution experiments showed the unfolding to be reversible, and the equilibrium data have been interpreted in terms of a two-state model. The protein is stabilized by the strong metal binding in the native state, so that the folding free energy is as high as –52.2 kJ mol–1 for the oxidized protein. The reduced protein is less stable, with a folding free energy of –40.0 kJ mol–1. A thermodynamic cycle shows, as a consequence, that unfolded azurin has a reduction potential 0.13 V above that of the folded protein. This is explained by the bipyramidal site in the native fold stabilizing Cu(II) by a rack mechanism, with the same geometry being maintained in the Cu(I) form. In the unfolded protein, on the other hand, the coordination geometries are expected to differ for the two oxidation states, Cu(I) being stabilized by the cysteine thiol group in a linear or trigonal symmetry, whereas Cu(II) prefers oxygen ligands in a tetragonal geometry. Received: 15 January 1997 / Accepted: 3 April 1997  相似文献   

17.
Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)2Cu(μ-N,O:O′-apm)2(H2O)Cu(apm)2(H2O)] · 5H2O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) Å, b = 15.6840(1) Å, c = 21.5280(1) Å, α = 93.02(1)°, β = 93.21(1)°, γ = 92.66(1)° and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and β-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure.  相似文献   

18.
New copper(II) complexes of general empirical formula, Cu(mpsme)X · xCH3COCH3 (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature μeff values for the complexes are in the range 1.75-2.1 μB typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] · 0.5CH3COCH3}2 and [Cu(mpsme)NCS]n complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3] 0.5CH3COCH3}2 complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)]n complex has a novel staircase-like one dimensional polymeric structure in which the NCS ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other.  相似文献   

19.
A double mutant of CuA azurin was prepared in which both bridging cysteine thiolate ligands of the binuclear CuA center were replaced by serine. The copper binding properties of this protein were investigated, and shown to be pH dependent. At lower pH (5.2 ± 0.1), the protein binds one copper per protein molecule as demonstrated by electrospray ionization mass spectrometry. Copper titrations resulted in electronic absorptions at 730 nm (peak) and ca. 330 nm (shoulder) in the UV-Vis spectrum. EPR data show a four line pattern with hyperfine A = 150 G and g and g values 2.32 and 2.03, characteristic of a type II (T2) copper. Superhyperfines to two nitrogen atoms were also observed. At higher pH (8.5 ± 0.1), the protein binds upto two copper atoms per protein molecule, and copper titrations exhibit a blue transition at 595 nm in the UV-Vis spectrum. The EPR data are consistent with two monomeric sites very similar to one another having hyperfines A = 182 and 150 G, g = 2.24 and 2.22 and a similar g value of 2.01. These results indicate that both bridging cysteines play a critical role in the CuA center, and replacing them with serines is not enough to maintain the symmetrical diamond core structure or the characteristic electronic and functional properties of the CuA center.  相似文献   

20.
Galactose oxidase is a radical copper oxidase, an enzyme making use of a covalently modified tyrosine residue as a free radical redox cofactor in alcohol oxidation catalysis. We report here a combination of spectroscopic and magnetochemical studies developing insight into the interactions between the active site Cu(II) and two distinct tyrosine ligands in the biological complex. One of the tyrosine ligands (Y495) is coordinated to the Cu(II) metal center as a phenolate in the resting enzyme and serves as a general base to abstract a proton from the coordinated substrate, thus activating it for oxidation. The structure of the resting enzyme is temperature-dependent as a consequence of an internal proton equilibrium associated with this tyrosine that mimics this catalytic proton transfer step. The other tyrosine ligand (Y272) is covalently crosslinked to a cysteine residue forming a tyrosine–cysteine dimer free radical redox site that is required for hydrogen atom abstraction from the activated substrate alkoxide. The presence of the free radical in the oxidized active enzyme results in formation of an EPR-silent Cu(II) complex shown by multifield magnetic saturation experiments to be a diamagnetic singlet arising from antiferromagnetic exchange coupling between the metal and radical spins. A paramagnetic contribution observed at higher temperature may be associated with thermal population of the triplet state, thus permitting an estimate of the magnitude of the isotropic exchange coupling (J>200 cm−1, JS1·S2) in this complex. Structural correlations and the possible mechanistic significance of metal–radical coupling in the active enzyme are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号