首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical localization of two distinct intracellular aspartic proteinases, cathepsins E and D, in human gastric mucosal cells and various rat cells was investigated by immunogold technique using discriminative antibodies specific for each enzyme. Cathepsin D was exclusively confined to primary or secondary lysosomes in almost all the cell types tested, whereas cathepsin E was not detected in the lysosomal system. The localization of cathepsin E varied with different cell types. Microvillous localization of cathepsin E was found in the intracellular canaliculi of human and rat gastric parietal cells, rat renal proximal tubule cells, and the bile canaliculi of rat hepatic cells. The immunolocalization of each enzyme in gastric cells were essentially the same in humans and rats. In the gastric feveolar epithelial cells and parietal cells, definite immunolabeling for cathepsin E was observed in the cytoplasmic matrix, the cisternae of the rough endoplasmic reticulum, and the dilated perinuclear envelope. In rat kidney, cathepsin E was detected only in the proximal tubule cells, while cathepsin D was found mainly in the lysosomes of the distal tubule cells but not in those of the proximal tubule cells. These results clearly indicate the distinct intracytoplasmic localization of cathepsins E and D and suggest the possible involvement of cathepsin E in extralysosomal proteolysis that is related to specialized functions of each cell type.  相似文献   

2.
Cathepsin E is an intracellular aspartic proteinase of the pepsin family predominantly expressed in cells of the immune system and believed to contribute to homeostasis by participating in host defense mechanisms. Studies on its enzymatic properties, however, have been limited by a lack of sensitive and selective substrates. For a better understanding of the importance of this enzyme in vivo, we designed and synthesized a highly sensitive peptide substrate for cathepsin E based on the sequence of the specific cleavage site of alpha2-macroglobulin. The substrate constructed, MOCAc-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH2 [where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], derived from the cleavage site sequence of human alpha2-macroglobulin, was the most sensitive and selective for cathepsin E, with k(cat)/K(m) values of 8-11 microM(-1) s(-1), whereas it was resistant to hydrolysis by the analogous aspartic proteinases cathepsin D and pepsin, as well as the lysosomal cysteine proteinases cathepsins B, L, and H. The assay allows the detection of a few fmol of cathepsin E, even in the presence of plasma and cell lysate, and gives accurate results over a wide enzyme concentration range. This substrate might represent a useful tool for monitoring and accurately quantifying cathepsin E, even in crude enzyme preparations.  相似文献   

3.
Cathepsin E, an intracellular aspartic proteinase, is predominantly localized in the endosomal compartments of immune system cells. In the present study, we investigated the role of cathepsin E in immune defense systems against bacterial infection. Cathepsin E-deficient (CatE(-/-)) mice showed dramatically increased susceptibility to infection with both the Gram-positive bacterium Staphyrococcus aureus, and the Gram-negative bacterium Porphyromonas gingivalis when compared with syngeneic wild-type mice, most likely due to impaired regulation of bacterial elimination. Peritoneal macrophages from CatE(-/-) mice showed significantly impaired tumor necrosis factor-alpha and IL-6 production in response to S. aureus and decreased bactericidal activities toward this bacterium. Moreover, the cell surface levels of Toll-like receptor-2 (TLR2) and TLR4, which recognize specific components of Gram-positive and -negative bacteria, respectively, were decreased in CatE(-/-) macrophages, despite no significant difference in the total cellular expression levels of these receptors between the wild-type and CatE(-/-) macrophages, implying trafficking defects in these surface receptors in the latter. These results indicate an essential role of cathepsin E in immune defense against invading microorganisms, most probably due to regulation of the cell surface expression of TLR family members required for innate immune responses.  相似文献   

4.
TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.  相似文献   

5.
Abstract: Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.  相似文献   

6.
The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget’s disease of bone.  相似文献   

7.
Cathepsin E is a major intracellular aspartic protease which is predominantly present in the cells of immune system and is frequently implicated in antigen processing via the MHC class II pathway. In the present review some of the known features of cathepsin E such as tissue distribution, subcellular localization, enzymatic properties, intracellular trafficking, gene regulation and associated physiological conditions are highlighted.  相似文献   

8.
Virus and facultative intracellular bacteria both replicate within a host cell. The recognition and killing of virus-infected cells by natural killer (NK) cells is thought to be an important host immune function. However, little is known about immune recognition of bacteria-infected cells. In this report, we show for the first time that human peripheral blood lymphocytes (PBL) and large granular lymphocytes (LGL) purified from PBL have significant levels of cytotoxic activity against Shigella flexneri-infected HeLa cells. This cytotoxic activity was dependent on bacterial invasion of the HeLa cells, because HeLa cells pretreated with a noninvasive isogenic variant of S. flexneri or soluble bacterial products were not killed. Pretreatment of PBL with interleukin 2 (IL 2) or interferon-alpha greatly enhanced the cytotoxic activity of PBL against Shigella-infected HeLa cells. Cytotoxic activity present in PBL or in PBL pretreated with IL 2 was shown to be associated with both Leu-11+ and Leu-11- cell populations. These results suggest that NK cell killing of bacteria-infected cells may play an important role in host defense against facultative intracellular bacterial infections.  相似文献   

9.
Summary Eukaryotic cells live in a relatively comfortable equilibrium with a wide variety of microbes. However, while many of the cohabiting microorganisms are harmless or even beneficial to the eukaryotic host, a number of prokaryotes have evolved the capacity to invade and replicate within host cells, thereby becoming potentially pathogenic. To be able to cope with potential pathogens, most organisms have developed several host defense mechanisms. First, microbes can be internalized and destroyed by a number of cell types of an innate immune system in a rather aspecific manner. Second, more complex organisms possess additionally an adaptive immune system that is capable of eliminating hazardous microbes in a highly specific manner. This review describes recent progress in our understanding of how pathogens interact with cells of the immune system, resulting in activation of the immune system or, for certain microorganisms, in the evasion of host defense reactions.  相似文献   

10.
Oral keratinocytes and fibroblasts may be the first line of host defense against oral microorganisms. Here, the contention that oral keratinocytes and fibroblasts recognize microbial components via Toll‐like receptors (TLRs) and participate in development of oral inflammation was examined. It was found that immortalized oral keratinocytes (RT7), fibroblasts (GT1) and primary cells express mRNA of TLRs 1–10. Interleukin‐8 (IL‐8) production by RT7 cells was induced by treatment with TLRs 1–9 with the exception of TLR7 agonist, whereas GT1 cells were induced to produce IL‐8 by all TLR agonists tested except for TLR7 and TLR9. GT1 cells showed increased CXCL10 production following treatment with agonists for TLR1/2, TLR3, TLR4, and TLR5, whereas only those for TLR3 and TLR5 increased CXCL10 production in RT7 cells. Moreover, TLR agonists differentially regulated tumor necrosis factor‐alpha‐induced IL‐8 and CXCL10 production by the tested cell types. These findings suggest that recognition of pathogenic microorganisms in oral keratinocytes and fibroblasts by TLRs may have important roles in orchestrating host immune responses via production of various chemokines.  相似文献   

11.
Cathepsin B, a lysosomal cysteine proteinase, was detected within vesicles of cellular protrusions forming cell-cell contact sites between keratinocytes of the stratum spinosum of human skin. This observation suggested the possibility that secretion of the protease into the pericellular spaces could be involved in the dissociation of cell-cell contacts to enable intraepidermal keratinocyte migration. To determine whether cathepsin B is indeed secreted from migrating keratinocytes, we first used subconfluent HaCaT cells as a culture model to study spontaneous keratinocyte migration. A cathepsin B-specific fluorescent affinity label proved the association of mature cathepsin B with the surfaces of HaCaT cells at the leading edges of growing cells. Second, we used scratch-wounds of confluent HaCaT monolayers as a model of induced keratinocyte migration. Cathepsin B was detected within lysosomes, i.e. vesicles within the perinuclear region of non-wounded cells. Expression of cathepsin B was up-regulated and cathepsin B-positive vesicles showed a redistribution from perinuclear to peripheral regions of keratinocytes at the wound margins within 4 h after wounding. Enzyme cytochemistry further showed that cell surface-associated cathepsin B was proteolytically active at the leading fronts of migrating keratinocytes. In addition, increased amounts of mature forms of cathepsin B were detected within the conditioned media of HaCaT cells during the first 4 h after scratch-wounding. In contrast, and as a control, the activity of the cytosolic enzyme lactate dehydrogenase was not significantly higher in media of wounded cells as compared with non-wounded controls, arguing for a specific induction of cathepsin B secretion upon wounding and migration of the cells. This was further substantiated by applying various cathepsin B-specific inhibitors after wounding. These experiments showed that the migration ability of keratinocytes was reduced due to the blockage of functional cathepsin B. Thus, our results strongly suggest that cell surface-associated cathepsin B is a protease that contributes to the remodelling of the extracellular matrix and thereby promotes keratinocyte migration during wound healing.  相似文献   

12.
Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that gammadelta T cell population was the major source of IL-17. Mice depleted of gammadelta T cells by mAb treatment or mice genetically lacking Vdelta1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vdelta1(+) gammadelta T cells as the source of IL-17. It was further revealed that gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although gammadelta T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of gammadelta T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.  相似文献   

13.
Mycobacterium tuberculosis (Mtb) is the intracellular pathogen that causes the disease, tuberculosis. Chemokines and chemokine receptors are key regulators in immune cell recruitment to sites of infection and inflammation. This review highlights our recent advances in understanding the role of chemokines and chemokine receptors in cellular recruitment of immune cells to the lung, role in granuloma formation and host defense against Mtb infection.  相似文献   

14.
Wolbachia are obligate intracellular bacteria which commonly infect arthropods. They are maternally inherited and capable of altering host development, sex determination, and reproduction. Reproductive manipulations include feminization, male-killing, parthenogenesis, and cytoplasmic incompatibility. The mechanism by which Wolbachia avoid destruction by the host immune response is unknown. Generation of antimicrobial peptides (AMPs) and reactive oxygen species (ROS) by the host are among the first lines of traditional antimicrobial defense. Previous work shows no link between a Wolbachia infection and the induction of AMPs. Here we compare the expression of protein in a cell line naturally infected with Wolbachia and an identical cell line cured of the infection through the use of antibiotics. Protein extracts of each cell line were analyzed by two dimensional gel electrophoresis and LC/MS/MS. Our results show the upregulation of host antioxidant proteins, which are active against ROS generated by aerobic cell metabolism and during an immune response. Furthermore, flow cytometric and microscopic analysis demonstrates that ROS production is significantly greater in Wolbachia-infected mosquito cells and is associated with endosymbiont-containing vacuoles located in the host cell cytoplasm. This is the first empirical data supporting an association between Wolbachia and the insect antioxidant system.  相似文献   

15.
The antiserum raised against the high-molecular-weight acid proteinase from rat gastric mucosa, termed 86-kDa acid proteinase, has been shown to recognize rat cathepsin E, but not cathepsin D (Muto, N. et al. (1987) J. Biochem. 101, 1069-1075). Using this specific antiserum, characteristic distribution of cathepsin E in rats was demonstrated. The enzyme was detected in a limited number of tissues, such as stomach, thymus, spleen, bladder, and erythrocyte membranes. Among them, the highest activity was observed in the stomach. In contrast, cathepsin D immunoreactive with the antiserum specific to rat gastric cathepsin D was demonstrated in all the tissues examined. Cathepsin E-type enzymes partially purified from these five tissues were precipitated in the same manner by the specific antiserum, and they had the same molecular weight, electrophoretic mobility, and resistance against denaturation by 4 M urea. These results indicate that they could be exactly classified as cathepsin E. This type of enzyme was also detectable in mice and guinea pigs, but they showed relatively weak immunoreactivities with the antiserum. Thus, it is concluded that the distribution of cathepsin E is intrinsically different from ordinary cathepsin D, suggesting that it has a different physiological role from cathepsin D.  相似文献   

16.
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.  相似文献   

17.
Two types of acid proteases, cathepsin D and cathepsin E-like enzyme, from rat gastric mucosa and spleen were compared in their biochemical and immunochemical properties. The enzymes were partially purified by employing the same chromatographic procedures and they showed a single proteolytically active band in polyacrylamide gel electrophoresis. Two low molecular weight enzymes, cathepsins D, from both tissues showed the same molecular weight and the same sensitivities to various inhibitors, but slightly different electrophoretic mobilities. The rabbit antiserum raised against gastric mucosa cathepsin D precipitated both enzymes. On the other hand, high molecular weight enzymes, gastric mucosa cathepsin D-like acid proteinase and spleen cathepsin E-like acid proteinase, were similar to each other as judged by their chromatographic profiles, electrophoretic mobilities, and high stabilities in urea solution. Furthermore, the antiserum specific to gastric mucosa cathepsin D-like acid proteinase inhibited both enzyme activities in a similar manner. However, the antiserum specific to one type of enzyme did not react with the other type. These results indicate that: gastric mucosa cathepsin D is immunologically identical with spleen cathepsin D; gastric mucosa cathepsin D-like acid proteinase has biochemical and immunological properties quite similar to spleen cathepsin E-like enzyme; these two types of acid proteases are quite different proteins existing in the individual tissues.  相似文献   

18.
D Raju  S Hussey  NL Jones 《Autophagy》2012,8(9):1387-1388
Autophagy plays key roles both in host defense against bacterial infection and in tumor biology. Helicobacter pylori (H. pylori) infection causes chronic gastritis and is the single most important risk factor for the development of gastric cancer in humans. Its vacuolating cytotoxin (VacA) promotes gastric colonization and is associated with more severe disease. Acute exposure to VacA initially triggers host autophagy to mitigate the effects of the toxin in epithelial cells. Recently, we demonstrated that chronic exposure to VacA leads to the formation of defective autophagosomes that lack CTSD/cathepsin D and have reduced catalytic activity. Disrupted autophagy results in accumulation of reactive oxygen species and SQSTM1/p62 both in vitro and in vivo in biopsy samples from patients infected with VacA (+) but not VacA (-) strains. We also determined that the Crohn disease susceptibility polymorphism in the essential autophagy gene ATG16L1 increases susceptibility to H. pylori infection. Furthermore, peripheral blood monocytes from individuals with the ATG16L1 risk variant show impaired autophagic responses to VacA exposure. This is the first study to identify both a host autophagy susceptibility gene for H. pylori infection and to define the mechanism by which the autophagy pathway is affected following H. pylori infection. Collectively, these findings highlight the synergistic effects of host and bacterial autophagy factors on H. pylori pathogenesis and the potential for subsequent cancer susceptibility.  相似文献   

19.
Toll-like receptor (TLR) 3 and TLR7 are indispensable for host defense against viral infection by recognizing virus-derived RNAs and are localized to intracellular membranes via an unknown mechanism. We recently reported experiments with chimeric Toll-like receptors that suggested that the subcellular distribution of TLRs may be defined by their transmembrane and/or cytoplasmic domains. Here we demonstrate that the intracellular localization of TLR3 is achieved by a 23-amino acid sequence (Glu(727) to Asp(749)) present in the linker region between the transmembrane domain and Toll-interleukin 1 receptor resistance (TIR) domain. In contrast, the intracellular localization of TLR7 is achieved by its transmembrane domain. These elements also targeted a heterologous type I transmembrane protein CD25 to the intracellular compartment that contained TLR3 and TLR7. Despite their using distinct regulatory elements for intracellular localization, TLR3 was found to co-localize with TLR7. In addition, TLR3 and TLR7 were preferentially localized near phagosomes containing apoptotic cell particles. These findings reveal that TLR3 and TLR7 contain unique targeting sequences, which differentially lead them to the same intracellular compartments and adjacent to phagosomes containing apoptotic cell particles, where these receptors may access their ligands for the induction of immune responses against viral infection.  相似文献   

20.
Interferon-γ (IFN-γ) is important for host defense against various intracellular organisms including a protozoan pathogen Toxoplasma gondii. Various immune cells are recently shown to produce IFN-γ in T. gondii infection, however, it remains elusive which cell types are important for anti-T. gondii host defense so far. Here we generate a new IFN-γ reporter "GREVEN" mouse line in which a fusion protein of Venus and NanoLuc to analyze IFN-γ producing cells during T. gondii infection and find that CD4+, CD8+, γδ T cells and natural killer cells express Venus in a time dependent manner. Furthermore, Lck-Cre/Ifngfl/fl mice are highly susceptible to T. gondii infection. Taken together, our results demonstrate that T cell-derived IFN-γ plays an important role in anti-T. gondii host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号