首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shifting and permanent cultivation, selective logging, cattle production and coffee plantations are among the most important factors in montane cloud forest conversion and disturbance. Although shaded-coffee plantations can contribute to the preservation of local species richness, abundance of organisms could be determined by habitat resource availability in agricultural landscapes. We compared abundance of Sturnira and Artibeus bats (Phyllostomidae, Stenodermatinae), in shade coffee plantations and disturbed cloud forest fragments, which represent habitats with different chiropterochorous plant density. We also investigated the relationship between bat species abundance and food plant richness, abundance and diversity. We captured 956 bats, 76% in cloud forest fragments and 24% in shaded coffee plantations. Abundance of Sturnira spp. (small bats) was greater in cloud forest than in coffee plantations, but Artibeus spp. (large bats) abundance was similar in both habitats. Chiropterochorous plant abundance was positively related with bat abundance for Sturnira spp., while chiropterochorous plant richness and diversity were negatively related for Artibeus spp. This suggests that frugivorous bats with different morphological and ecological characteristics respond differentially to anthropogenic activities. For landscape management purposes, the maintenance and augmentation of diverse food resources, for frugivorous bats with different foraging requirements in coffee plantations, will benefit the resilience of bats to modification of their natural habitat.  相似文献   

2.
The agricultural matrix surrounding forested areas serves critical functions as dispersal corridors and alternate habitat for wildlife. Agricultural intensification, however, can reduce the conservation value of these areas. To evaluate the effects of agroecosystem management on bat assemblages, we studied the abundance and diversity of leaf-nosed bats (family: Phyllostomidae) in southwestern Chiapas, Mexico, a landscape dominated by shade coffee agroforestry. During 2104 mist-net hour (MNH), we captured 3167 bats of 27 phyllostomid species. Total species richness in each land-use type varied from 24 species in forest fragments to 22 species in commercial shade polycultures. Although the cumulative observed species richness showed little change in response to management intensity, the number of bats captured per MNH declined significantly in the more intensively managed (i.e., low-shade monocultures) plantations. Intensively managed coffee plantations had lower phyllostomid diversity and species similarity, and had lower proportions of nectarivorous and animalivorous bats. Among frugivores, the proportion of large (>25 g) frugivores captured increased with management intensity. Recapture frequency was significantly higher than expected in forest fragments, and lower than expected in more intensively managed coffee. Our results suggest that less intensively managed coffee agroforests can serve as valuable feeding and commuting areas for most leaf-nosed bats, and that maintaining forest fragments in agricultural landscapes contributes to bat diversity. Declines in populations of gleaning insectivores, however, could compromise natural suppression of insect pests in these agricultural areas.  相似文献   

3.
Studies comparing the abundance of frugivorous bats in shade‐coffee plantations and forest fragments report contradictory results, and have not taken into account the landscape context in which coffee plantations are immersed. Variables of population composition such as abundance, sex proportion, and reproductive condition, together with biological tags (i.e., bat fly prevalence), can provide information about spatiotemporal dynamics of habitats used by bats. In the central part of Veracruz, Mexico, we compared population variables and ectoparasite prevalence of the highland yellow‐shouldered bat (Sturnira ludovici) in two landscapes, one dominated by shade‐coffee plantations and another by forest fragments. Comparing these attributes between these two landscapes will increase our knowledge about the role of this agro‐ecosystem in the conservation of this species, which is an important seed disperser of cloud forest vegetation. Total abundance and proportion of females was greater in forest fragments than in coffee plantations, whereas the percentage of reproductive females and bat fly prevalence was similar between landscapes. Our results show that landscapes with forest fragments harbor the greatest abundance of S. ludovici, but shade‐coffee plantations also are utilized by S. ludovici and likely adjacent forest remnants provide enough food resources for this species and other frugivores. Moreover, this study provides more evidence documenting the importance of preserving the last cloud forest fragments in the central region of Veracruz, Mexico, and suggests that using shade‐coffee plantations to connect forest fragments may be an effective way of maintaining populations of S. ludovici and likely other volant frugivores.  相似文献   

4.
Shade coffee plantations are considered important habitats for frugivorous bats. However, it is not known if bats use this agricultural habitat for shelter, food resources, or both. This study addresses these questions using the highland yellow‐shouldered bat (Sturnira hondurensis) as an example. Twenty‐six adult individuals of S. hondurensis were captured, 50 percent in tropical montane cloud forest (TMCF) and 50 percent in shade coffee plantations (SCP) in Veracruz, Mexico, and each was fitted with a radio transmitter for locating roosts and feeding areas. Data were obtained from 24 of them. The fieldwork was conducted between October 2010 and October 2011 covering all seasons. Twenty‐two day roosts were located in the cavities of twelve different species of tree. Roosts located in TMCF differed significantly from those in SCP, having a smaller crown area and a greater species richness and density of plants around the roost. In SCP, both the average home range and the average core use area were smaller than in TMCF, but the differences were not statistically significant. Distances travelled by bats were generally longer and more variable in the SCP; the distance between capture site and foraging site was significantly greater in SCP than in TMCF. In SCP, there were fewer understory chiropterochorous plants, which are the main item in the diet of this bat and many other sympatric species of frugivorous bats. Although S. hondurensis does use roosts and foraging sites in the SCP, it is important to note that this species and others with similar requirements primarily depend on the preservation of intact forest adjacent to modified landscapes, where roosts and fruit are constantly available in abundance. Management practices should guarantee a greater density and diverse of trees and the preservation of understory plants with fruits in the coffee plantations that allow a long‐term survival of frugivorous bats populations.  相似文献   

5.
Bird communities of natural and modified habitats in Panama   总被引:7,自引:0,他引:7  
Only a small proportion of land can realistically be protected as nature reserves and thus conservation efforts also must focus on the ecological value of agroecosystems and developed areas surrounding nature reserves. In this study, avian communities were surveyed in 11 habitat types in central Panama, across a gradient from extensive forest to intensive agricultural land uses, to examine patterns of species richness and abundance and community composition. Wooded habitats, including extensive and fragmented forests, shade coffee plantations, and residential areas supported the most species and individuals. Nearctic-Neotropical migratory species were most numerous in lowland forest fragments, shade coffee, and residential areas. Introduced Pinus caribbea and sugar cane plantations supported the fewest species compared to all other habitats. Cattle pastures left fallow for less than two years supported more than twice as many total species as actively grazed pastures, such that species richness in fallow pastures was similar to that found in wooded habitats. Community similarities were relatively low among all habitat types (none exceeding the observed 65% similarity between extensive and fragmented lowland forests), but communities in shade coffee and residential areas were 43% and 54′% similar to lowland forest fragments, respectively. Fallow pastures and residential areas shared 60% of their species. Bird communities in shade coffee and residential areas were characterized by higher proportions of frugivorous and nectarivorous species than in native forests. These same guilds also were better represented in fallow than in grazed pastures. Raptors and piscivorous species were most prevalent in cattle pastures and rice fields. These results, though based upon only species richness and abundance, demonstrate that many human-altered habitats have potential ecological value for birds, and conservation efforts in tropical areas should focus greater attention on enhancement of agricultural and developed lands as wildlife habitat. To understand the true conservation value of these modified lands will require examination not only of numbers but also of the types of species supported by these habitats, their reproductive output and survival rates.  相似文献   

6.
Land‐use intensification has consequences for biodiversity and ecosystem functioning, with various taxonomic groups differing widely in their sensitivity. As land‐use intensification alters habitat structure and resource availability, both factors may contribute to explaining differences in animal species diversity. Within the local animal assemblages the flying vertebrates, bats and birds, provide important and partly complementary ecosystem functions. We tested how bats and birds respond to land‐use intensification and compared abundance, species richness, and community composition across a land‐use gradient including forest, traditional agroforests (home garden), coffee plantations and grasslands on Mount Kilimanjaro, Tanzania. Furthermore, we asked how sensitive different habitat and feeding guilds of bats and birds react to land‐use intensification and the associated alterations in vegetation structure and food resource availability. In contrast to our expectations, land‐use intensification had no negative effect on species richness and abundance of all birds and bats. However, some habitat and feeding guilds, in particular forest specialist and frugivorous birds, were highly sensitive to land‐use intensification. Although the habitat guilds of both, birds and bats, depended on a certain degree of vegetation structure, total bat and bird abundance was mediated primarily by the availability of the respective food resources. Even though the highly structured southern slopes of Mount Kilimanjaro are able to maintain diverse bat and bird assemblages, the sensitivity of avian forest specialists against land‐use intensification and the dependence of the bat and bird habitat guilds on a certain vegetation structure demonstrate that conservation plans should place special emphasis on these guilds.  相似文献   

7.
Frugivorous are one of the main diaspore dispersers in tropical ecosystems, particularly in open areas and sites in the early stages of ecological succession. Frugivorous bat species respond differentially to habitat modification, and in the context of their diaspore dispersal functions it is important to understand species' ecological requirements. We compared the diversity of diaspores, obtained from fecal samples and from fruits carried by frugivorous bats, among five shaded coffee plantations under different management regimes and a montane rain forest in southeastern Chiapas, Mexico. At each site, bats were captured every 2 mo from March 2004 to July 2005, using six mist‐nets, during two consecutive nights. We captured 2589 individuals from 18 frugivorous species, from which we collected 969 fecal samples, containing 42 diaspore species associated with early and late successional plants. Although, we captured more frugivorous bat species in montane rain forest, the number of diaspore species in this site (N=14) was not significantly different from the coffee plantations under different management regimes (16–24). In montane rain forest, Sturnira ludovici fed mainly on Piper auritum, but in coffee plantations ate Peperomia sp., Saurauia madrensis, Solanum chrysotrichum and Solanum diphyllum. Artibeus jamaicensis and Artibeus intermedius feed mostly Cecropia obtusifolia and Ficus cookii in all coffee plantations. We suggest that the presence of frugivorous bats in shaded coffee plantations is favored by trees and shrubs associated with secondary and introduced vegetation that farmers have allowed to grow within or around the plantations.  相似文献   

8.
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.  相似文献   

9.
We used capture (mist‐netting) and acoustic methods to compare the species richness, abundance, and composition of a bat assemblage in different habitats in the Western Ghats of India. In the tropics, catching bats has been more commonly used as a survey method than acoustic recordings. In our study, acoustic methods based on recording echolocation calls detected greater bat activity and more species than mist‐netting. However, some species were detected more frequently or exclusively by capture. Ideally, the two methods should be used together to compensate for the biases in each. Using combined capture and acoustic data, we found that protected forests, forest fragments, and shade coffee plantations hosted similar and diverse species assemblages, although some species were recorded more frequently in protected forests. Tea plantations contained very few species from the overall bat assemblage. In riparian habitats, a strip of forested habitat on the river bank improved the habitat for bats compared to rivers with tea planted up to each bank. Our results show that shade coffee plantations are better bat habitat than tea plantations in biodiversity hotspots. However, if tea is to be the dominant land use, forest fragments and riparian corridors can improve the landscape considerably for bats. We encourage coffee growers to retain traditional plantations with mature native trees, rather than reverting to sun grown coffee or coffee shaded by a few species of timber trees.  相似文献   

10.
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 '' = 0.55) compared to TMCF fragments (mean H2 '' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service.  相似文献   

11.
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.  相似文献   

12.
The recent trend of agricultural intensification in tropical landscapes poses a new threat to biodiversity conservation. Conversion of previously heterogeneous agricultural landscapes to intensive plantation agriculture simplifies and homogenizes the landscape, reducing availability, and connectivity of natural habitat for native species. To assess the impact of agricultural intensification on bats, we characterized the bat assemblage in the Sarapiquí region of Costa Rica, where heterogeneous land uses are being converted to intensive, large‐scale pineapple plantations. In 2012 and 2013, we sampled bats in 20 remnant forest patches surrounded by varying proportions of pasture, mature forest, and pineapple and captured 1821 individual bats representing 39 species. We used ordination analyses to evaluate changes in species composition, where pineapple is the main component of the agricultural matrix. We identified landscape metrics specifically correlated with pineapple and used multiple linear regression to test their effects on bat species richness, diversity, and guild‐specific relative abundance. Results suggest pineapple expansion is driving changes in assemblage composition in remnant forest patches, resulting in new assemblages with higher proportions of frugivorous bats and lower proportions of insectivorous bats than in continuous mature forests. In addition, while pineapple does not diminish total bat species richness and diversity, the reduced forest cover and increased distance between forest patches in pineapple plantations has a significant negative impact on the relative abundance of insectivores. We also identify a potential threshold effect whereby patches surrounded by more than 50 percent forest can retain assemblage composition similar to that found in continuous mature forest.  相似文献   

13.
The oil palm industry is one of the main economic drivers in Southeast Asia. The industry has caused tropical deforestation on a massive scale in producing countries, and this forest conversion to oil palm agriculture has decimated the habitat of numerous native species. Monoculture and polyculture practices are two distinctive oil palm production systems. We hypothesize that polyculture farming hosts a greater diversity of species than monoculture farming. Habitat complexity in smallholdings is influenced by multiple farming practices (i.e. polyculture and monoculture). However, little is known about the effects of such farming practices in smallholdings on mammalian biodiversity, and particularly frugivorous bats. Our study aimed to find the best farming practice to reconcile oil palm production with biodiversity conservation. Mist-nets were used to trap frugivorous bats at 120 smallholdings in Peninsular Malaysia. We compared species richness and the abundance of frugivorous bats between monoculture and polyculture smallholdings. We investigated their relationships with vegetation structure characteristics. Our results revealed that species richness and abundance of frugivorous bats were significantly greater in polyculture smallholdings than monoculture smallholdings. We also found that 28.21% of the variation in species richness was explained by in situ habitat characteristics, including the number of dead standing oil palms and immature oil palms, non-grass cover, height of non-grass cover, and farming practices. The in situ habitat quality was closely associated with oil palm farming management. Commercial growers should implement polyculture rather than monoculture farming because polyculture farming has positive effects on the abundance and species richness of bats in oil palm production landscapes.  相似文献   

14.
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.  相似文献   

15.
Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology.  相似文献   

16.
Neotropical fruit bats (family Phyllostomidae) facilitate forest regeneration on degraded lands by dispersing shrub and tree seeds. Accordingly, if fruit bats can be attracted to restoration sites, seed dispersal could be enhanced. We surveyed bat communities at 10 sites in southern Costa Rica to evaluate whether restoration treatments attracted more fruit bats if trees were planted on degraded farmlands in plantations or island configurations versus natural regeneration. We also compared the relative influence of tree cover at local and landscape spatial scales on bat abundances. We captured 68% more fruit bat individuals in tree plantations as in controls, whereas tree island plots were intermediate. Bat activity also responded to landscape tree cover within a 200‐m radius of restoration plots, with greater abundance but lower species richness in deforested landscapes. Fruit bat captures in controls and tree island plots declined with increasing landscape tree cover, but captures in plantations were relatively constant. Individual species responded differentially to tree cover measured at different spatial scales. We attribute restoration effects primarily to habitat structure rather than food resources because no planted trees produced fruits regularly eaten by bats. The magnitude of tree planting effects on fruit bats was less than previous studies have found for frugivorous birds, suggesting that bats may play a particularly important role in dispersing seeds in heavily deforested and naturally regenerating areas. Nonetheless, our results show that larger tree plantations in more intact landscapes are more likely to attract diverse fruit bats, potentially enhancing seed dispersal.  相似文献   

17.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

18.
Coffee agroforests may be structurally and floristically complex and may contain a significant fraction of species from biodiverse and threatened tropical montane forest biotas; hence, understanding the dynamics of tropical forest biodiversity in coffee agroecosystems has emerged as a centrally important area of tropical conservation biology research. We conducted a morphospecies analysis on foliage-dwelling beetles collected from coffee plants on four coffee farms in southern Chiapas, Mexico, to characterize variation in the abundance, species richness, and species composition of this mega-diverse taxon in relation to coffee cultivation system, spatio-temporal variation, and predator removal. We constructed thirty-two cages to exclude birds and bats on four farms, each enclosing 7–10 coffee plants and paired with an adjacent uncaged control plot, and then collected beetles from coffee foliage with D-Vac aspirators in each plot once every 3 months for one year.We classified the 2662 beetles collected into 293 morphospecies, representing 42 families of beetles. Extrapolation and interpolation analyses revealed a very high level of species richness, with no plateau and only a slight leveling trend observed in our species accumulation curves. We found that low-shade systems contain equal or higher beetle abundance, lower species richness, more highly homogenized species composition, and higher abundance of coffee berry borer pests on coffee foliage than do high-shade systems. We observed no effect of flying vertebrate exclusion on the coffee foliage beetle assemblage, but did find significant variation in abundance, species richness, and species composition of coffee foliage beetles across seasons and study sites.The increased beetle biodiversity of high-shade coffee cultivation systems has important implications both for the preservation of native biodiversity in coffee growing regions and for the control of agricultural pests such as the coffee berry borer.  相似文献   

19.
Bats have important ecological roles in ecosystems, but many species are threatened because of anthropogenic impacts. Tanzania has limited information on how bats respond to habitat modification. This makes it difficult to anticipate which bat species are at risk. Bat activity and species richness were assessed in five land‐use types: forest and banana–coffee (upland habitats), rice paddy, riverine and sisal estate (lowland habitats). Mist nets, harp traps and bat detectors were used to sample bats. Species richness differed between habitats. Bat activity levels were higher in lowland habitats than upland habitats. Riverine and rice paddy habitats were shown to have an important role as foraging sites for many insectivorous bats as bat species richness and activity were generally higher than other habitats. Fruit‐eating bats preferred riverine and banana–coffee habitats. We recommend using organic manure as alternatives to chemical fertilisers, and pesticide use should be avoided in rice paddies. Riparian vegetation along rivers and water bodies should be maintained as important faunal nesting, roosting and/or foraging grounds. The requirement that farming practices be at least 60 m from the river should be strictly enforced. These recommendations will help in the conservation of bats and their habitats in modified agricultural landscapes.  相似文献   

20.
In the SE Peruvian Amazon, large numbers of frugivorous bats regularly visit natural forest clearings known locally as collpas (which are also referred to as clay licks or mineral licks). Bats arrive at collpas to drink water that has accumulated in depressions created by larger geophagous mammals that consume exposed soil. Although collpa visitation is common, little is known about its causes and its ecological implications for the bat community. We compared patterns of use of collpas and non- collpa forest sites by bats in SE Peru. We mist netted bats at collpas and non- collpa sites during the dry season and compared abundance, species richness, species composition, sex ratio, and reproductive condition. More species were captured at collpas than at non- collpa sites, and collpas were visited almost exclusively by frugivores. Overall, bat-capture frequency and combined frugivorous bat-capture frequency were higher at collpas than at non- collpa sites, although some species of frugivorous bats were captured more frequently at non- collpa sites than at collpas ( e.g ., Carollia spp.). Irrespective of capture site, more female bats were pregnant or lactating than not, but there was a distinct female sex bias in bats that visited collpas : 70 percent of bats captured at collpas were female, whereas 44 percent of bats captured away from collpas were female. These patterns suggest that collpas may provide important resources for frugivorous bats in SE Peru, just as they are thought to provide important resources to the vertebrates that consume collpa soils. Accordingly, collpas are important conservation targets in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号