首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The chemical shift of the carboxylate carbon of Z-tryptophan is increased from 179.85 to 182.82 ppm and 182.87 ppm on binding to thermolysin and stromelysin-1 respectively. The chemical shift of Z-phenylalanine is also increased from 179.5 ppm to 182.9 ppm on binding to thermolysin. From pH studies we conclude that the pK(a) of the inhibitor carboxylate group is lowered by at least 1.5 pK(a) units when it binds to either enzyme. The signal at ~183 ppm is no longer observed when the active site zinc atom of thermolysin or stromelysin-1 is replaced by cobalt. We estimate that the distance of the carboxylate carbon of Z-[1-(13)C]-L-tryptophan is ≤3.71? from the active site cobalt atom of thermolysin. We conclude that the side chain of Z-[1-(13)C]-L-tryptophan is not bound in the S(2)' subsite of thermolysin. As the chemical shifts of the carboxylate carbons of the bound inhibitors are all ~183 ppm we conclude that they are all bound in a similar way most probably with the inhibitor carboxylate group directly coordinated to the active site zinc atom. Our spectrophotometric results confirm that the active site zinc atom is tetrahedrally coordinated when the inhibitors Z-tryptophan or Z-phenylalanine are bound to thermolysin.  相似文献   

2.
The aldehyde inhibitor Z-Ala-Ala-Phe-CHO has been synthesized and shown by 13C-NMR to react with the active site serine hydroxyl group of alpha-chymotrypsin to form two diastereomeric hemiacetals. For both hemiacetals oxyanion formation occurs with a pKa value of ~ 7 showing that chymotrypsin reduces the oxyanion pKa values by ~ 5.6 pKa units and stabilizes the oxyanions of both diastereoisomers by ~ 32 kJ mol− 1. As pH has only a small effect on binding we conclude that oxyanion formation does not have a significant effect on binding the aldehyde inhibitor. By comparing the binding of Z-Ala-Ala-Phe-CHO with that of Z-Ala-Ala-Phe-H we estimate that the aldehyde group increases binding ~ 100 fold. At pH 7.2 the effective molarity of the active site serine hydroxy group is ~ 6000 which is ~ 7 × less effective than with the corresponding glyoxal inhibitor. Using 1H-NMR we have shown that at both 4 and 25 °C the histidine pKa is ~ 7.3 in free chymotrypsin and it is raised to ~ 8 when Z-Ala-Ala-Phe-CHO is bound. We conclude that oxyanion formation only has a minor role in raising the histidine pKa and that the aldehyde hydrogen must be replaced by a larger group to raise the histidine pKa > 10 and give stereospecific formation of tetrahedral intermediates. The results show that a large increase in the pKa of the active site histidine is not needed for the active site serine hydroxyl group to have an effective molarity of 6000.  相似文献   

3.
207Pb NMR spectroscopy can be used to monitor the binding of Pb(II) to thiol rich biological small molecules such as glutathione and to zinc finger proteins. The UV/visible (UV/Vis) absorption band centered at 334 nM and the observed 207Pb signal in 207Pb NMR (δ ~ 5750 ppm) indicate that glutathione binds Pb(II) in a trigonal pyramidal geometry (PbS3) at pH 7.5 or higher with a 1:3 molar ratio of Pb(II) to GSH. While previous studies using UV/Vis and extended X-ray absorption fine structure (EXAFS) spectroscopy were interpreted to show that the zinc binding domain from HIV nucleocapsid protein (HIV-CCHC) binds Pb(II) in a single PbS3 environment, the more sensitive 207Pb NMR spectra (at pH 7.0, 1:1 molar ratio) provide compelling evidence for the presence of two PbS3 structures (δ - 5790 and 5744 ppm), one of which is more stable at high temperatures. It has previously been proposed that the HIV-CCHH peptide does not fold properly to afford a PbS2N motif, because histidine does not bind to Pb(II). These predictions are confirmed by the present studies. These results demonstrate the applicability of 207Pb NMR to biomolecular structure determination in proteins with cysteine binding sites for the first time.  相似文献   

4.
The stromelysin-1 catalytic domain(83-247) (SCD) is stable for at least 16 h at pHs 6.0-8.4. At pHs 5.0 and 9.0 there is exponential irreversible denaturation with half lives of 38 and 68 min respectively. At pHs 4.5 and 10.0 irreversible denaturation is biphasic. At 25°C, C-terminal truncation of stromelysin-1 decreases the stability of the stromelysin-1 catalytic domain at pH values >8.4 and <6.0. We describe the conversion of the carboxylate group of (βR)-β-[[[(1S)-1-[[[(1S)-2-Methoxy-1-phenylethyl]amino]carbonyl]-2,2-dimethylpropyl]amino]carbonyl]-2-methyl-[1,1'-biphenyl]-4-hexanoic acid (UK-370106-COOH) a potent inhibitor of the metalloprotease stromelysin-1 to a glyoxal group (UK-370106-CO(13)CHO). At pH 5.5-6.5 the glyoxal inhibitor is a potent inhibitor of stromelysin-1 (K(i)=~1μM). The aldehyde carbon of the glyoxal inhibitor was enriched with carbon-13 and using carbon-13 NMR we show that the glyoxal aldehyde carbon is fully hydrated when it is in aqueous solutions (90.4ppm) and also when it is bound to SCD (~92.0ppm). We conclude that the hemiacetal hydroxyl groups of the glyoxal inhibitor are not ionised when the glyoxal inhibitor is bound to SCD. The free enzyme pK(a) values associated with inhibitor binding were 5.9 and 6.2. The formation and breakdown of the signal at ~92ppm due to the bound UK-370106-CO(13)CHO inhibitor depends on pK(a) values of 5.8 and 7.8 respectively. No strong hydrogen bonds are present in free SCD or in SCD-inhibitor complexes. We conclude that the inhibitor glyoxal group is not directly coordinated to the catalytic zinc atom of SCD.  相似文献   

5.
Aquatic organisms such as cichlids, coelacanths, seals, and cetaceans are active in UV–blue color environments, but many of them mysteriously lost their abilities to detect these colors. The loss of these functions is a consequence of the pseudogenization of their short wavelength-sensitive (SWS1) opsin genes without gene duplication. We show that the SWS1 gene (BdenS1ψ) of the deep-sea fish, pearleye (Benthalbella dentata), became a pseudogene in a similar fashion about 130 million years ago (Mya) yet it is still transcribed. The rates of nucleotide substitution (~ 1.4 × 10− 9/site/year) of the pseudogenes of these aquatic species as well as some prosimian and bat species are much smaller than the previous estimates for the globin and immunoglobulin pseudogenes.  相似文献   

6.
Schizosaccharomyces pombe (Sp) ferredoxin contains a C-terminal electron transfer protein ferredoxin domain (etpFd) that is homologous to adrenodoxin. The ferredoxin has been characterized by spectroelectrochemical methods, and Mössbauer, UV-Vis and circular dichroism spectroscopies. The Mössbauer spectrum is consistent with a standard diferric [2Fe-2S]2+ cluster. While showing sequence homology to vertebrate ferredoxins, the E°' and the reduction thermodynamics for etpFd (− 0.392 V) are similar to plant-type ferredoxins. Relatively stable Cys to Ser derivatives were made for each of the four bound Cys residues and variations in the visible spectrum in the 380-450 nm range were observed that are characteristic of oxygen ligated clusters, including members of the [2Fe-2S] cluster IscU/ISU scaffold proteins. Circular dichroism spectra were similar and consistent with no significant structural change accompanying these mutations. All derivatives were active in an NADPH-Fd reductase cytochrome c assay. The binding affinity of Fd to the reductase was similar, however, Vmax reflecting rate limiting electron transfer was found to decrease ~ 13-fold. The data are consistent with relatively minor perturbations of both the electronic properties of the cluster following substitution of the Fe-bond S atom with O, and the electronic coupling of the cluster to the protein.  相似文献   

7.
The Zn-proteinase, isolated from Saccharomonosporacanescens (NPS), shares many common features with thermolysin, but considerable differences are also evident, as far as the substrate recognition site is concerned. In substrates of general structure AcylAlaAlaPhe 4NA, this neutral proteinase cleaves only the arylamide bond (non-typical activity of Zn-proteinases), while thermolysin attacks the peptide bond Ala-Phe. Phosphoramidon is a powerful tight binding inhibitor for thermolysin and significantly less specific towards NPS. The Ki-values (65 μM for NPS vs 0.034 μM for thermolysin) differ nearly 2000-folds. This implies significant differences in the specificity of the corresponding subsites. The carbohydrate moiety is supposed to accommodate in the S1-subsite and the series of arabinopyranosides and glucopyranosides (12 compounds), which are assayed as inhibitors in a model system: NPS with SucAlaAlaPhe4NA as a substrate could be considered as mapping the S1-subsite of NPS. Members of the series with an additional ring (3,4-epithio, 3,4-anhydro-derivatives) turned out to be reasonably good competitive inhibitors (Ki ≈ 0.1-0.2 mM are of the same order as the Ki value for phosphoramidon). The structure of these compounds (8, 9, 11 and 12) seems to fit the size of the S1-subsite and due to an appropriately oriented OH-group in addition, to protect the active site Zn2+.  相似文献   

8.

Background

Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site.

Methods

In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential.

Results

The final proteolytic step of PfSERA5 involves removal of a C-terminal ~ 6 kDa fragment that results in the generation of a catalytically active ~ 50 kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~ 6 kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5.

Conclusions

Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress.

General significance

These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~ 6 kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.  相似文献   

9.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

10.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

11.
12.
Dipeptidyl peptidase (DPP) III is a zinc-dependent exopeptidase that has a unique motif, “HELLGH,” as the zinc-binding site. In the present study, a three-dimensional (3D) model of rat DPP III was generated with the X-ray crystal structure of human DPP III (PDB: 3FVY [Dobrovetsky E. et al. (2009) SGC]) as a template. The replacement of the seven charged amino acid residues with a hydrophobic amino acid around the zinc ion did not cause any significant changes in Km values or in the substrate specificity. However, the kcat values of H568R and H568Y were remarkably reduced, by factors of 50 and 400, respectively. The His568 residue of rat DPP III is essential for enzyme catalysis. The kcat values of the mutants E507A and E512A were 2.38 and 3.88 s− 1 toward Arg-Arg-NA, and 0.097 and 0.59 s1 toward Phe-Arg-NA, respectively. These values were markedly lower than those of the wild-type DPP III. Furthermore, the zinc contents of E507A and E512A were 0.29 and 0.08 atom per mol of protein, respectively, and those mutations caused remarkable increases in the dissociation constants of the zinc ions from DPP III by factors of 5 × 103 to 2 × 104. The 3D model of the catalytic domain of rat DPP III showed that the carboxyl oxygen atoms of Glu507 and Glu512 form the hydrogen bonds to the nitrogen atoms of His455 and His450. All of these results showed that Glu507 or Glu512 stabilizes the coordination bond between the zinc ion and His455 or His450.  相似文献   

13.
Melikishvili M  Rodgers DW  Fried MG 《DNA Repair》2011,10(12):1193-1202
Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-labeled DNAs, AGT reduced the fluorescence intensity by ∼40% at binding saturation, whether the FAM was located at the 5′ or the 3′ end of the DNA. AGT protected residual fluorescence from quenching, indicating a solute-inaccessible binding site for FAM. Sedimentation equilibrium analyses showed that saturating AGT-stoichiometries were higher with FAM-labeled DNAs than with unlabeled DNAs, suggesting that the FAM provides a protein binding site that is not present in unlabeled DNAs. Additional fluorescence and sedimentation measurements showed that AGT forms a 1:1 complex with free FAM. Active site benzylation experiments and docking calculations support models in which the primary binding site is located in or near the active site of the enzyme. Electrophoretic analyses show that FAM inhibits DNA binding (IC50 ∼ 76 μM) and repair of DNA containing an O6-methylguanine residue (IC50 ∼ 63 μM). Similar results were obtained with other polycyclic aromatic compounds. These observations demonstrate the existence of a new class of non-covalent AGT-inhibitors. After optimization for binding-affinity, members of this class might be useful in cancer chemotherapy.  相似文献   

14.

Background

Thymosin beta 4 (Tβ4) is a major actin sequestering peptide present in most mammalian cells. It also acts as an anti-inflammatory agent and promotes corneal wound healing.

Methods

In the present study, we constructed a four channel cylindrical flow chambers out of polydimethylsiloxane (PDMS) on microscope coverslips. The platelet-binding proteins–fibrinogen and collagen–were immobilized onto the middle ~ 25% of the inner cylindrical surface. The flow method introduced here was employed to determine the effect of Tβ4, on the deposition of ADP-activated platelets onto fibrinogen cross-linked flow chambers.

Results

The binding data from the flow chambers indicated that the both the rate constant of platelet deposition (average: 0.026 ± 0.0015 s− 1, corresponding to a half-life of 26.7 s) and the total number of deposited platelets were independent of the platelet binding protein and the activating agent. Our results show that low concentrations of Tβ4 (0.2 μM to 0.5 μM) increased both the rate constant of platelet deposition by ~ 1.5-fold (i.e. half-life decreased from 26.7 s to 17.6 s) and the total number of deposited platelets by ~ 3-fold. However at higher concentrations (> 1 μM) the Tβ4-potentiating effect was diminished to near control levels. Tβ4 did interact with fibrinogen with an estimated KD of ~ 126 ± 18 nM or 66 ± 20 nM under equilibrium or flow, respectively.

Conclusion

These results suggest that Tβ4 could potentially increase the affinity of platelet receptors for their ligands thus promoting platelet deposition. Tβ4 could also bind to fibrinogen and as its concentration increased would prevent platelet–fibrinogen interactions resulting in the attenuation of platelet deposition.

General significance

This work suggests that Tβ4 might have a dual role in platelet function.  相似文献   

15.
The crystal structures of the catalytic fragments of ‘lethal toxin’ from Clostridium sordellii and of ‘α-toxin’ from Clostridium novyi have been established. Almost half of the residues follow the chain fold of the glycosyl-transferase type A family of enzymes; the other half forms large α-helical protrusions that are likely to confer specificity for the respective targeted subgroup of Rho proteins in the cell. In the crystal, the active center of α-toxin contained no substrates and was disassembled, whereas that of lethal toxin, which was ligated with the donor substrate UDP-glucose and cofactor Mn2 +, was catalytically competent. Surprisingly, the structure of lethal toxin with Ca2 + (instead of Mn2 +) at the cofactor position showed a bound donor substrate with a disassembled active center, indicating that the strictly octahedral coordination sphere of Mn2 + is indispensable to the integrity of the enzyme. The homologous structures of α-toxin without substrate, distorted lethal toxin with Ca2 + plus donor, active lethal toxin with Mn2 + plus donor and the homologous Clostridium difficile toxin B with a hydrolyzed donor have been lined up to show the geometry of several reaction steps. Interestingly, the structural refinement of one of the three crystallographically independent molecules of Ca2 +-ligated lethal toxin resulted in the glucosyl half-chair conformation expected for glycosyl-transferases that retain the anomeric configuration at the C1″ atom. A superposition of six acceptor substrates bound to homologous enzymes yielded the position of the nucleophilic acceptor atom with a deviation of < 1 Å. The resulting donor-acceptor geometry suggests that the reaction runs as a circular electron transfer in a six-membered ring, which involves the deprotonation of the nucleophile by the β-phosphoryl group of the donor substrate UDP-glucose.  相似文献   

16.
17.
Complexes of cobalt(II) and zinc(II) which involve monodentate coordination of two alkyl carboxylate and two imidazole ligands in a slightly distorted tetrahedral fashion have visible and magnetic circular dichroism spectra remarkably similar to the cobalt(II)-substituted proteolytic enzymes thermolysin and carboxypeptidase A. Single crystal x-ray structure determinations on [Co(C2H5COO)2Im2], Im = imidazole, and its zinc counterpart reveal only minor structural differences between the cobalt and zinc species. Electron paramagnetic resonance spectra of cobalt(II) doped into zinc(II) complexes with known structures demonstrate the extreme sensitivity of the g-values to minor structural differences.  相似文献   

18.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

19.
1H-NMR and electronic spectroscopic data are reported for the interaction of the effector molecule imidazole and the inhibitor molecule pyrazole with horse liver alcohol dehydrogenase whose catalytic zinc ions were replaced by Co(II). In addition 13C-NMR and optical data are given for the binding of acetate to this enzyme species. For the binary complex with imidazole an assignment of the protons of the metal-coordinated imidazole has been made and it was found that the rate of exchange of the effector molecule is slow on the NMR time scale. In the presence of NADH which is bound to the open conformation of the binary complex, the most pronounced change is a shift of the -CH2 protons of the metal-coordinated cysteine residues which is attributed to hydrogen bonding interactions between the carboxamide group of the nicotinamide moiety with cysteine 46. The 1H-NMR spectra of the binary complex of Co(II)-HLADH with pyrazole show resonances assigned to the protons in the 3-and 4-positions of the bound inhibitor, the NH proton resonance is not detectable. In the ternary complex with pyrazole and NAD+ only the resonances of the -CH2 protons (beyond 150 ppm) are changed whereas the protons of histidine 67 and the bound inhibitor are unchanged. The data demonstrate that the coordination environment of the catalytic metal ion is changed very little when the protein changes from the open to the closed conformation. The only changes observed are the -CH2 proton resonances of the metal-coordinating cysteines which are sensitive to local conformational changes within the ternary complex Co(II)-HLADH · Imidazole · NADH in the open conformation or global changes in the ternary complex Co(II)-HLADH · Pyrazole · NAD+ in the closed conformation. Acetate which can be regarded as a substrate model was shown to induce a similar change in the optical spectra of the Co(II) enzyme as all other anions observed so far. From the optical changes a dissociation constant of acetate at the catalytic metal site of 200±50 mM was calculated and from the changes of the 13C-NMR linewidth of 13C acetate direct bonding of the anion to the catalytic Co(II) ion can be demonstrated to occur under the conditions of rapid exchange. The implications of these data for the assessment of tetracoordination around the catalytic metal ion as well as the chemical nature of intermediates occurring along the catalytic pathway are discussed.This work has been performed with contribution of the project Projetto Strategico Biotechnologie CNR and with financial support from the Deutsche Forschungsgemeinschaft, NATO, Bundesminister für Forschung und Technologie, and the Universität des Saarlandes  相似文献   

20.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号