首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ervatamin C, a novel cysteine protease, belongs to alpha + beta class of proteins, probably with two domains, and retains both secondary and tertiary structures along with biological activity over a wide range of pH (2-12). Under neutral conditions, GuHCl and temperature-induced unfolding was cooperative with high transition midpoints and shows no structural changes in the presence of urea reflecting a remarkable stability. The fluorescence emission maximum at 350 nm suffers a blue shift of 4-5 nm upon lowering the pH and a red shift of 5 nm under denatured conditions. Unfolding transition curves at pH 2.0 are non-coincidental indicating the presence of intermediates in the unfolding pathway. At extremely low pH, the enzyme loses all the tertiary structure and proteolytic activity but retains a predominant secondary structure and a strong binding to ANS. GuHCl-induced unfolding of the enzyme in this intermediate state is noncooperative and indicates sequential unfolding of the domains.  相似文献   

2.
A low molecular mass pectate lyase from Fusarium moniliforme was unfolded reversibly by urea and Gdn-HCl at its optimum pH of 8.5, as monitored by intrinsic fluorescence, circular dichroism, and enzymatic activity measurements. Equilibrium unfolding studies yielded a deltaG(H(2)O) of 1.741 kcal/mol, D1/2 of 2.3M, and m value of 0.755kcal/molM with urea and a deltaG(H(2)O) of 1.927kcal/mol, D1/2 of 1.52M, and m value of 1.27 kcal/molM with Gdn-HCl as the denaturant. Thermal denaturation of the pectate lyase at, pH 8.5, was also reversible even after exposure to 75 degrees C for 10 min. Thermodynamic parameters calculated from thermal denaturation curves at pH values from 5.0 to 8.5 yielded a deltaCp of 0.864kcal/(molK). The deltaG(25 degrees C) at, pH 8.5, was 2.06kcal/mol and was in good agreement with the deltaG(H(2)O) values obtained from chemical denaturation curves. There was no exposure of hydrophobic pockets during chemical or thermal denaturation as indicated by the inability of ANS to bind the pectate lyase.  相似文献   

3.
CI2 folds and unfolds as a single cooperative unit by simple two-state kinetics, which enables the properties of the transition state to be measured from both the forward and backward rate constants. We have examined how the free energy of the transition state for the folding of chymotrypsin inhibitor 2 (CI2) changes with pH and temperature. In addition to the standard thermodynamic quantities, we have measured the overall acid-titration properties of the transition state and its heat capacity relative to both the denatured and native states. We were able to determine the latter by a method analogous to a well-established procedure for measuring the change in heat capacity for equilibrium unfolding: the enthalpy of activation of unfolding at different values of acid pH were plotted against the average temperature of each determination. Our results show that the transition state of CI2 has lost most of the electrostatic and van der Waals' interactions that are found in the native state, but it remains compact and this prevents water molecules from entering some parts of the hydrophobic core. The properties of the transition state of CI2 are then compared with the major folding transition state of the larger protein barnase, which folds by a multi-state mechanism, with the accumulation of a partly structured intermediate (Dphysor I). CI2 folds from a largely unstructured denatured state under physiological conditionsviaa transition state which is compact but relatively uniformly unstructured, with tertiary and secondary structure being formed in parallel. We term this an expanded pathway. Conversely, barnase folds from a largely structured denatured state in which elements of structure are well formed through a transition state that has islands of folded elements of structure. We term this a compact pathway. These two pathways may correspond to the two extreme ends of a continuous spectrum of protein folding mechanisms. Although the properties of the two transition states are very different, the activation barrier for folding (Dphys→3 ) is very similar for both proteins.  相似文献   

4.
The stability of the substrate-binding region of human inducible Hsp70 was studied by a combination of spectroscopic and calorimetric methods. Thermal denaturation of the protein involves four accessible states: the native state, two largely populated intermediates, and the denatured state, with transition temperatures of 52.8, 56.2 and 71.2 degrees C, respectively, at pH 6.5. The intermediate spectroscopic properties resemble those of molten globules but they still retain substantial enthalpy and heat capacity of unfolding. Moreover, the similar heat capacities of the first intermediate and the native state suggests that the hydrophobic core of the intermediate would be highly native-like and that its formation would involve an increased disorder in localized portions of the structure rather than formation of a globally disordered state. The structure of the C-terminal of Hsp70 is destabilized as the pH separates from neutrality. The intermediates become populated under heat shock conditions at acidic and basic pHs. Denaturation by guanidine chloride also indicated that the protein undergoes a sequential unfolding process. The free energy change associated to the loss of secondary structure at 20 degrees C (pH 6.5) is 3.1 kcal.mol(-1) at high salt conditions. These values agree with the free energy changes estimated from differential scanning calorimetry for the transition between the second intermediate and the final denatured state.  相似文献   

5.
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.  相似文献   

6.
Abstract

Recent site-directed mutagenesis and thermodynamic studies have shown that the V74I mutant of Escherichia coli ribonuclease HI (RNase HI) is more stable than the wild type protein [Ishikawa et al., Biochemistry 32, 6171 (1993)]. In order to clarify the stabilization mechanism of this mutant, we calculated the free energy change due to the mutation Val 74→Ile in both the native and denatured states by free energy perturbations based on molecular dynamics (MD) simulations. We carried out inclusive MD simulations for the protein in water; i.e., fully solvated, no artificial constraints applied, and all long-range Coulomb interactions included. We found that the free energy of the mutant increased slightly relative to the wild type, in the native state by 1.60 kcal/mol, and in the denatured state by 2.25 kcal/mol. The unfolding free energy increment of the mutant (0.66 ± 0.19 kcal/mol) was in good agreement with the experimental value (0.6 kcal/mol). The hysteresis error in the free energy calculations, i.e., forward and reverse perturbations, was only ±0.19 kcal/mol. These results show that the V74I mutant is stabilized relative to the wild type by the increased free energy of the denatured state and not by a decrease in the free energy of the native state as had been proposed earlier based on the mutant X-ray structure. It was found that the stabilization was caused by a loss of solvation energy in the mutant denatured state and not by improved packing interactions inside the native protein.  相似文献   

7.
High-sensitivity differential scanning calorimetry and CD spectroscopy have been used to probe the structural stability and measure the folding/unfolding thermodynamics of a Pro117-->Gly variant of staphylococcal nuclease. It is shown that at neutral pH the thermal denaturation of this protein is well accounted for by a 2-state mechanism and that the thermally denatured state is a fully hydrated unfolded polypeptide. At pH 3.5, thermal denaturation results in a compact denatured state in which most, if not all, of the helical structure is missing and the beta subdomain apparently remains largely intact. At pH 3.0, no thermal transition is observed and the molecule exists in the compact denatured state within the 0-100 degrees C temperature interval. At high salt concentration and pH 3.5, the thermal unfolding transition exhibits 2 cooperative peaks in the heat capacity function, the first one corresponding to the transition from the native to the intermediate state and the second one to the transition from the intermediate to the unfolded state. As is the case with other proteins, the enthalpy of the intermediate is higher than that of the unfolded state at low temperatures, indicating that, under those conditions, its stabilization must be of an entropic origin. The folding intermediate has been modeled by structural thermodynamic calculations. Structure-based thermodynamic calculations also predict that the most probable intermediate is one in which the beta subdomain is essentially intact and the rest of the molecule unfolded, in agreement with the experimental data. The structural features of the equilibrium intermediate are similar to those of a kinetic intermediate previously characterized by hydrogen exchange and NMR spectroscopy.  相似文献   

8.
Deu E  Kirsch JF 《Biochemistry》2007,46(19):5810-5818
The guanidine hydrochloride (GdnHCl) mediated denaturation pathway for the apo form of homodimeric Escherichia coli aspartate aminotransferase (eAATase) (molecular mass = 43.5 kDa/monomer) includes a partially folded monomeric intermediate, M* [Herold, M., and Kirschner, K. (1990) Biochemistry 29, 1907-1913; Birolo, L., Dal Piaz, F., Pucci, P., and Marino, G. (2002) J. Biol. Chem. 277, 17428-17437]. The present investigation of the urea-mediated denaturation of eAATase finds no evidence for an M* species but uncovers a partially denatured dimeric form, D*, that is unpopulated in GdnHCl. Thus, the unfolding process is a function of the employed denaturant. D* retains less than 50% of the native secondary structure (circular dichroism), conserves significant quaternary and tertiary interactions, and unfolds cooperatively (mD*<==>U = 3.4 +/- 0.3 kcal mol-1 M-1). Therefore, the following equilibria obtain in the denaturation of apo-eAATase: D <==> 2M 2M* <==> 2U in GdnHCl and D <==> D* <==> 2U in urea (D = native dimer, M = folded monomer, and U = unfolded state). The free energy of unfolding of apo-eAATase (D <==> 2U) is 36 +/- 3 kcal mol-1, while that for the D* 2U transition is 24 +/- 2 kcal mol-1, both at 1 M standard state and pH 7.5.  相似文献   

9.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

10.
The structure of LysN contains an OB-fold motif composed of a structurally conserved five-stranded beta-barrel capped by a poorly conserved alpha-helix between strands beta3 and beta4. Two additional alpha-helices, unique to the LysN structure, flank the N terminus of the OB-fold. The stability of LysN to unfolding has been investigated with NMR native state hydrogen exchange measurements as a function of guanidinium hydrochloride concentration, and equilibrium unfolding transitions monitored by ellipticity at 222 nm and fluorescence at 350 nm. The spectrophotometric measurements suggest an apparent two-state unfolding transition with DeltaGu(0) approximately 6 kcal/mol and m approximately 3 kcal/(molM). By contrast, NMR hydrogen exchange measurements manifest a distribution of DeltaGu(0) and m values which indicate that the protein can undergo subglobal unfolding. The largest DeltaGu(0) values from hydrogen exchange are for residues in the beta-sheet of the protein. These values, which reflect complete unfolding of the protein, are between 3 and 4 kcal/mol higher than those obtained from circular dichroism or fluorescence. This discrepancy may be due to the comparison of NMR hydrogen exchange parameters measured at residue-level resolution, with spectrophotometric parameters that reflect an unresolved super position of unfolding transitions of the alpha-helices and beta-strands. The largest DeltaGu(0) values obtained from hydrogen exchange for the subset of residues in the alpha-helices of the protein, agree with the DeltaGu(0) values obtained from circular dichroism or fluorescence. Based on the hydrogen exchange data, however, the three alpha-helices of LysN are on average 3 kcal/mol less stable than the beta-sheet. Consistent with the subglobal unfolding of LysN evinced by hydrogen exchange, a deletion mutant that lacks the first alpha-helix of the protein retains a cooperatively folded structure. Taken together with previous results on the OB-fold proteins SN and CspA, the present results for LysN suggest that the most conserved elements of structure in the OB-fold motif are the most resistant to denaturation. In all three proteins, stability to denaturation correlates with sequence hydrophobicity.  相似文献   

11.
Streptomyces subtilisin inhibitor (SSI) is known to exist in at least two distinct denatured states, cold-denatured (D') and heat-denatured (D) under acidic conditions. In the present work, we investigated the manner how increasing urea concentration from 0 to 8 M changes the polypeptide chain conformation of SSI that exists initially in the D' and D states as well as in the native state (N), in terms of the secondary structure, the tertiary structure, and the chain form, based on the results of the experiments using circular dichroism (CD), small-angle X-ray scattering (SAXS) and 1H-NMR spectroscopy. Our results indicate that the urea-induced conformational transitions of SSI under typical conditions of D' (pH 1.8, 3 degrees C) occur at least in two steps. In the urea concentration range of 0-2 M (step 1), a cooperative destruction of the tertiary structure occurs, resulting in a mildly denatured state (DU), which may still contain a little amount of secondary structures. In the concentration range of 2-4 M urea (step 2), the DU state gradually loses its residual secondary structure, and increases the radius of gyration nearly to a maximum value. At 4 M urea, the polypeptide chain is highly disordered with highly mobile side chains. Increasing the urea concentration up to 8 M probably results in the more highly denatured or alternatively the stiffer chain conformations. The conformational transition starting from the N state proceeds essentially the same way as in the above scheme in which D' is replaced with N. The conformational transition starting from the D state lacks step 1 because the D state contains no tertiary structures and is similar to the DU state. The fact that similar conformations are reached at urea concentrations above 2 M from different conformations of D', D, and N indicates that the effect of urea dominates in determining the polypeptide conformation of SSI in the denatured states rather than the pH and temperature.  相似文献   

12.
Triose phosphate isomerase (TIM) was prepared and purified from chicken breast muscle. The equilibrium unfolding of TIM by urea was investigated by following the changes of intrinsic fluorescence and circular dichroism spectroscopy, and the equilibrium thermal unfolding by differential scanning calorimetry (DSC). Results show that the unfolding of TIM in urea is highly cooperative and no folding intermediate was detected in the experimental conditions used. The thermodynamic parameters of TIM during its urea induced unfolding were calculated as DeltaG degrees =3.54 kcal.mol(-1), and m(G) = 0.67 kcal.mol(-1)M(-1), which just reflect the unfolding of dissociated folded monomer to fully unfolded monomer transition, while the dissociation energy of folded dimer to folded monomer is probe silence. DSC results indicate that TIM unfolding follows an irreversible two-state step with a slow aggregation process. The cooperative unfolding ratio, DeltaH(cal)/DeltaH(vH), was measured close to 2, indicating that the two subunits of chicken muscle TIM unfold independently. The van't Hoff enthalpy, DeltaH(vH), was estimated as about 200 kcal.mol(-1). These results support the unfolding mechanism with a folded monomer formation before its tertiary structure and secondary structure unfolding.  相似文献   

13.
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state.  相似文献   

14.
We report steady-state and time-resolved fluorescence studies with the single tryptophan protein, Staphylococcus aureus A, and several of its site-directed mutants. A couple of these mutants, nuclease-conA and nuclease-conA-S28G (which are hybrid proteins containing a six amino acid beta-turn substitute from concanavalin A), are found to have a much lower thermodynamic stability than the wild type. The thermal transition temperatures for nuclease-conA and S28G are 32.8 and 30.5 degrees C, which are about 20 degrees C lower than the Tm for wild-type nuclease A. These mutant proteins also are denatured by a much lower concentration of the denaturants urea and guanidine hydrochloride. We also show that an unfolding transition in the structure of the nuclease-conA hybrids can be induced by relatively low hydrostatic pressure (approximately 700 bar). The free energy for unfolding of nuclease-conA (and nuclease-conA-S28G) is found to be only 1.4 kcal/mol (and 1.2 kcal/mol) by thermal, urea, guanidine hydrochloride, and pressure unfolding. Time-resolved fluorescence intensity and anisotropy measurements with nuclease-conA-S28G show the temperature-, urea-, and pressure-perturbed states each to have a reduced average intensity decay time and to depolarize with a rotational correlation time of approximately 1.0 ns (as compared to a rotational correlation time of 11 ns for the native form of nuclease-conA-S28G at 20 degrees C).  相似文献   

15.
Gruia AD  Fischer S  Smith JC 《Proteins》2003,50(3):507-515
Surface salt bridges are ubiquitous in globular proteins. Their contribution to protein stability has been extensively debated in the past decade. Here, molecular dynamics simulations are performed starting from a non-equilibrium state of Staphylococcal nuclease (SNase) with C-terminal truncation (SNaseDelta). The results indicate a key role in the unfolding of the surface salt bridge between arginine 105 and glutamate 135. Experimentally, SNaseDelta is known to be partially unfolded. However, in simulations over 1 ns at 300 K and over 500 ps at 400 K, SNaseDelta remains stable in the native-like folded conformation, the salt bridge hindering unfolding. When the potential function is altered so as to selectively weaken the salt bridge, which then breaks rapidly at 430 K, the protein starts to unfold. The results suggest that breaking of this salt bridge presents a significant barrier to the unfolding transition of SNaseDelta from a native-like state to the unfolded state. Potential of mean force calculations indicate that the barrier height for this transition is approximately 7 kcal/mol.  相似文献   

16.
The urea and guanidine hydrochloride (GdnHCl)-induced denaturation of tetrameric concanavalin A (ConA) at pH 7.2 has been studied by using intrinsic fluorescence, 8-anilino-1-naphthalenesulfonate (ANS) binding, far-UV circular dichroism (CD), and size-exclusion chromatography. The equilibrium denaturation pathway of ConA, as monitored by steady state fluorescence, exhibits a three-state mechanism involving an intermediate state, which has been characterized as a structured monomer of the protein by ANS binding, far-UV CD and gel filtration size analysis. The three-state equilibrium is analyzed in terms of two distinct and separate dissociation (native tetramer<-->structured monomer) and unfolding (structured monomer<-->unfolded monomer) reaction steps, with the apparent transition midpoints (C(m)), respectively, at 1.4 and 4.5 M in urea, and at 0.8 and 2.4 M in GdnHCl. The results show that the free energy of stabilization of structured monomer relative to the unfolded state (-DeltaG(unf, aq)), is 4.4-5.5 kcal mol(-1), and that of native tetramer relative to structured monomer (-DeltaG(dis, aq)) is 7.2-7.4 kcal mol(-1), giving an overall free energy of stabilization (-DeltaG(dis&unf, aq)) of 11.6-12.9 kcal mol(-1) (monomer mass) for the native protein. However, the free energy preference at the level of quaternary tetrameric structure is found to be far greater than that at the tertiary monomeric level, which reveals that the structural stability of ConA is maintained mostly by subunit association.  相似文献   

17.
The thermal transition of RNase T1 was studied by two different methods; tryptophan residue fluorescence and circular dichroism. The fluorescence measurements provide information about the environment of the indole group and CD measurements on the gross conformation of the polypeptide chain. Both measurements at pH 5 gave the same transition temperature of 56 degrees C and the same thermodynamic quantities, delta Htr (= 120 kcal/mol) and delta Str (= 360 eu/mol), for the transition from the native state to the thermally denatured state, indicating simultaneous melting of the whole molecule including the hydrophobic region where the tryptophan residue is buried. Stabilization by salts was observed in the pH range from 2 to 10, since the presence of 0.5 m NaCL caused an increase of about 5 degrees C to 10 degrees C in the transition temperature, depending on the pH. The fluorescence measurements on the RNase T1 complexed with 2'-GMP showed a transition with delta Htr =167 kcal/mol and delta Str =497 eu/mol at a transition temperature about 6 degrees C higher than that for the free enzyme. The large value of delta Htr for RNase T1 indicates the highly cooperative nature of the thermal transition; this value is much higher than those of other globular proteins. Analysis of the CD spectrum of thermally denatured RNase T1 suggests that the denatured state is not completely random but retains some ordered structures.  相似文献   

18.
The 37-residue Formin-binding protein, FBP28, is a canonical three-stranded beta-sheet WW domain. Because of its small size, it is so insensitive to chemical denaturation that it is barely possible to determine accurately a denaturation curve, as the transition spans 0-7 M guanidinium hydrochloride (GdmCl). It is also only marginally stable, with a free energy of denaturation of just 2.3 kcal/mol at 10 degrees Celsius so only small changes in energy upon mutation can be tolerated. But these properties and relaxation times for folding of 25 micros-400 micros conspire to allow the rapid acquisition of accurate and reproducible kinetic data for Phi-analysis using classical temperature-jump methods. The transition state for folding is highly polarized with some regions having Phi-values of 0 and others 1, as readily seen in chevron plots, with Phi-values of 0 having the refolding arms overlaying and those of 1 the unfolding arms superimposable. Good agreement is seen with transition state structures identified from independent molecular dynamics (MD) simulations at 60, 75, and 100 degrees Celsius, which allows us to explore further the details of the folding and unfolding pathway of FBP28. The first beta-turn is near native-like in the transition state for folding (experimental) and unfolding (MD and experiment). The simulations show that there are transient contacts between the aromatic side-chains of the beta-strands in the denatured state and that these interactions provide the driving force for folding of the first beta-hairpin of this three-stranded sheet. Only after the backbone hydrogen bonds are formed between beta1 and beta2 does a hydrogen bond form to stabilize the intervening turn, or the first beta-turn.  相似文献   

19.
The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol.  相似文献   

20.
M Bina-Stein  D M Crothers 《Biochemistry》1975,14(19):4185-4191
We have compared the molecular mechanism of thermal unfolding for native tRNA fMet (Escherichia coli) and the denatured species produced by annealing at pH 4.3. Relaxation kinetic measurements reveal that the transitions assigned to melting of TphiC, anticodon, and acceptor stem helices at neutral pH remain essentially unaltered at pH 4.3, but the transition corresponding to coupled melting of tertiary structure and dihydrouridine helix is greatly affected. The Tm of this region is more than 20 degrees higher at pH 4.3 and it has a larger enthalpy formation than in the native state. The transition dynamics are also considerably changed. In contrast to the native structure, tRNA fMet1 and tRNA fMet3 have similar tertiary structure stabilities at pH 4.3. We conclude that the structural difference between native and acid-denatured forms is localized in the tertiary structure-dihydrouridine helix cooperative interaction region of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号