首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements.  相似文献   

4.
5.
6.
7.
The CFTR gene exhibits a complex pattern of expression that shows temporal and spatial regulation though the control mechanisms have not been fully elucidated. We have mapped DNase I hypersensitive sites (DHS) flanking the CFTR gene to identify potential regulatory elements. We previously characterized DHS at -79.5 and -20.9 kb with respect to the CFTR translational start site, DHS 3' to the gene at 4574 + 5.4-7.4 and 4574 + 15.6 kb, and a regulatory element in the first intron of the gene at 185 + 10 kb. We generated a cosmid contig to provide probes to evaluate the whole of the CFTR gene for DHS and have now mapped novel sites in introns 2, 3, 10, 16, 17a, 18, 20, and 21. These DHS show different patterns of cell-specific expression.  相似文献   

8.
Regulatory elements that lie outside the basal promoter of a gene may be revealed by local changes in chromatin structure and histone modifications. The promoter of the CFTR (cystic fibrosis transmembrane conductance regulator) gene is not responsible for its complex pattern of expression. To identify important regulatory elements for CFTR we have previously mapped DHS (DNase I-hypersensitive sites) across 400 kb spanning the locus. Of particular interest were two DHS that flank the CFTR gene, upstream at -20.9 kb with respect to the translational start site, and downstream at +15.6 kb. In the present study we show that these two DHS possess enhancer-blocking activity and bind proteins that are characteristic of known insulator elements. The DHS core at -20.9 kb binds CTCF (CCCTC-binding factor) both in vitro and in vivo; however, the +15.6 kb core appears to bind other factors. Histone-modification analysis across the CFTR locus highlights structural differences between the -20.9 kb and +15.6 kb DHS, further suggesting that these two insulator elements may operate by distinct mechanisms. We propose that these two DHS mark the boundaries of the CFTR gene functional unit and establish a chromatin domain within which the complex profile of CFTR expression is maintained.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号