首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase, which phosphorylates InsP3 to form inositol 1,3,4,5-tetrakisphosphate, was purified to apparent homogeneity by (NH4)2SO4 fractionation and sequential chromatographic steps on DEAE-sepharose, calmodulin-Affi-Gel and DEAE-5PW h.p.l.c. The purified enzyme had a specific activity of 24.4 nmol of inositol tetrakisphosphate formed/min per mg of protein, which represented a purification of approx. 195-fold with a 0.29% recovery, compared with the cytosol fraction of the muscle. SDS/polyacrylamide-gel electrophoresis showed a single protein-staining band of Mr 93,000. Moreover, the major protein peak, of Mr 84,000, was detected by TSK gel G3000SW gel-permeation chromatography of the purified sample. As this value was approximately consistent with the Mr determined by SDS/polyacrylamide-gel-electrophoretic analysis, the InsP3 3-kinase might be a monomeric enzyme. The purified enzyme had a Km for InsP3 of 0.4 microM, with an optimum pH range of 5.8-7.7. The enzyme was maximally activated by calmodulin, with a stoichiometry of 1:1.  相似文献   

2.
Glutathione peroxidase (glutathione--H2O2 oxidoreductase; EC 1.11.1.9) was purified to homogeneity from human placenta by using (NH4)2SO4 precipitation, ion-exchange chromatography, Sephadex gel filtration and preparative polyacrylamide-disc-gel electrophoresis. Glutathione peroxidase from human placenta is a tetramer, having 4g-atoms of selenium/mol of protein. The molecular weight of the enzyme is about 85000 with a subunit size of about 22,000. Kinetic properties of the enzyme are described. On incubation with cyanide, glutathione peroxidase is completely and irreversibly inactivated and selenium is released as a low-molecular-weight fragment. Reduced glutathione, beta-mercaptoethanol and dithiothreitol protect the enzyme from inactivation by cyanide and the release of selenium. Properties of human placental glutathione peroxidase are similar to those of isoenzyme A reported earlier by us from human erythrocytes. The presence of isoenzyme, B, reported earlier by us in human erythrocytes, was not detected in placenta. Also selenium-independent glutathione peroxidase (isoenzyme II), which is specific for cumene hydroperoxide, was not present in human placenta.  相似文献   

3.
Adenine phosphoribosyltransferase was purified from Brassica juncea leaves approximately 4000-fold, to homogeneity. The native enzyme is a homodimer, with a Mr of 54,000. The purification involved (NH4)2SO4 fractionation, differential ultracentrifugation, and anion-exchange, hydrophobic, dye-ligand, and affinity chromatography. The purified enzyme has a pH optimum of 9.15 and a temperature optimum of 60 degrees C. Activity of the enzyme is stimulated by Mg2+ and is inhibited by sulfhydryl reagents. At the optimum pH and 37 degrees C, the apparent Km values for adenine and 5-phosphoribosyl-1-pyrophosphate were 3.8 and 15 microM, respectively. Analysis of the purified protein by isoelectric focusing revealed the presence of two isozymes with approximate isoelectric points of 5.3 and 5.4.  相似文献   

4.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475-5480). The new steps in the purification scheme include affinity chromatography on 2',5' ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative 'rocket' immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2',5' ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

5.
Cysteine-conjugate beta-lyase (EC 4.4.1.13) was purified about 880-fold from human liver obtained post mortem. The purification procedure included (NH4)2SO4 precipitation, chromatography on DEAE-cellulose and hydroxyapatite, gel filtration on Sephadex G-200, and chromatofocusing. The purified enzyme cleaves the C-S bond of several S-aryl-L-cysteines to yield equimolar amounts of thiols, pyruvic acid and ammonia via an alpha beta-elimination reaction. The Mr of the enzyme was estimated to be 88,000 by gel filtration. The enzyme is thermolabile, has a pH optimum of 8.5, and an apparent Km of 0.7 mM towards S-(p-bromophenyl)-L-cysteine. The enzyme requires pyridoxal 5'-phosphate as a cofactor, and hence the enzyme activity was completely abolished by hydroxylamine. No effect of EDTA or thiol-blocking reagents was observed on the activity of the enzyme.  相似文献   

6.
建立运用兔红细胞膜制备亲和树脂来纯化红芸豆中红细胞凝集素的方法。红芸豆经过浸提,(NH4)2SO4沉淀,红细胞膜亲和树脂吸附、洗脱得到红细胞凝集素(PHA-E)试样。采用电泳法测定其纯度、相对分子质量和等电点。用体积分数2%的兔红细胞悬液测定试样凝血活力及影响凝血因素。经PAGE分析PHA-E试样为单带,SDS-PAGE分析显示亚基相对分子质量为3.2×104,等电点为6.5。研究发现,促使50%兔红细胞产生凝集的试样蛋白质最低质量浓度为4μg/mL,单糖不影响PHA-E凝血活力,EDTA抑制其凝血活力,Zn2+促进其凝血。  相似文献   

7.
Treatment of pea seedlings with CuCl2 induced the activity of the enzyme NADPH:7,2'-dihydroxy-4',5'-methylenedioxyisoflavone oxidoreductase (DMIRase) that introduces (+) stereoisomerism in pisatin. DMIRase was purified approximately 7000 fold from CuCl2-treated pea seedlings to apparent homogeneity by a six-step process. The purification sequence included (NH4)2SO4 fractionation, gel filtration on AcA 44, chromatography on DEAE-Bio-Gel,phenyl-Sepharose CL-4B, and Reactive Red 120-agarose, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration and denaturing electrophoresis showed that the enzyme consisted of a single polypeptide chain with an Mr of 37,500. The pH optimum of DMIRase was determined to be 7.8. The enzyme showed apparent Michaelis constants of 20 microM for 7,2'-dihydroxy-4',5'-methylenedioxyisoflavone and 58 microM for NADPH. The reaction product of the enzyme, sophorol, gave a distinct negative Cotton effect in the region 300-360 nm, which indicated 3S configuration of the molecule. Antibodies against the enzyme were raised in rabbits and characterized for specificity.  相似文献   

8.
In this research, protease enzyme was purified and characterized from milk of Euphorbia amygdaloides. (NH4)2SO4 fractionation and CM-cellulose ion exchange chromatography methods were used for purification of the enzyme. The optimum pH value was determined to be 5, and the optimum temperature was determined to be 60 degrees C. The V(max) and K(M) values at optimum pH and 25 degrees C were calculated by means of Linewearver-Burk graphs as 0.27 mg/L min(-1) and 16 mM, respectively. The purification degree was controlled by using SDS-PAGE and molecular weight was found to be 26 kD. The molecular weight of the enzyme was determined as 54 kD by gel filtration chromatography. These results show that the enzyme has two subunits.In the study, it was also researched whether purified and characterized protease can be collapsed to milk. It was determined that protease enzyme can collapse milk and it can be used to produce cheese.  相似文献   

9.
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme has been isolated, purified and partially characterized from chicken liver. The following steps were carried out in order to purify chicken liver SOD. Initially, the liver was homogenized and hemoglobin was removed. Subsequently protein precipitation was effected with (NH(4))(2)SO(4), methanol, (NH(4))(2)SO(4)-methanol and polyethylene glycol methods. The product from polyethylene glycol-3350 precipitation was found to have the highest SOD activity. Polyethylene glycol was removed by chromatography using a PD-10 column. After passing through an ultrafilter, the superoxide dismutase was fractionated by DEAE-ion chromatography and then Sephadex G-75 gel filtration chromatography. During this purification procedure, a specific activity of 4818.2 IU/mg was reached, corresponding to 285.8-fold purification. The purified enzyme, which was characterized as cyanide-sensitive SOD, contained two subunits having Cu and Zn elements with a molecular weight of 16000+/-500 for each. The optimum pH of purified CuZnSOD was determined to be 8.9. The enzyme was found to have good pH stability in the pH range 6.0-7.5 at 25 degrees C over a 2-h incubation period and displayed good thermal stability up to 45 degrees C at pH 7.4 over a 1-h incubation period. The SOD enzyme was not inhibited by DTT and beta-mercaptoethanol, but inhibited by CN(-) and H(2)O(2). In the presence of 2 mM iodoacetamide, the enzyme showed an approximately 40% activity loss. Finally, the inhibitory effect of ionic strength on SOD was also investigated.  相似文献   

10.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475–5480). The new steps in the purification scheme include affinity chromatography on 2′,5′ ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative ‘rocket’ immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2′,5′ ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

11.
1. Protein disulphide-isomerase and glutathione-insulin transhydrogenase activities were assayed in parallel through a conventional purification of protein disulphide-isomerase from ox liver. 2. Throughout a series of purification steps (differential centrifugation, acetone extraction, (NH4)2SO4 precipitation and ion-exchange chromatography), the two activities appeared in the same fractions but were purified to different extents. 3. The final sample was 143-fold purified in protein disulphide-isomerase but only 10-fold purified in glutathione-insulin transhydrogenase; nevertheless the two activities in this preparation were not resolved by high-resolution isoelectric focusing and both showed pI4.65. 4. In a partially purified preparation containing both activities, glutathione-insulin transhydrogenase was far more sensitive to heat denaturation than was protein disulphide-isomerase; conversely protein disulphide-isomerase was more sensitive to inactivation by deoxycholate. 5. The data are inconsistent with a single enzyme being responsible for all the protein disulphide-isomerase and glutathione-insulin transhydrogenase activity of ox liver. It is suggested that several similiar thiol-protein disulphide oxidoreductases of overlapping specificities may better account for the data.  相似文献   

12.
The pig endometrial arylsulphatase A was purified 3322-fold to a specific activity of 150 mumol/min per mg. The purification involved (NH4)2SO4 fractionation, chromatography on concanavalin A-Sepharose and DEAE-Sepharose, gel filtrations on Sephadex G-200 at pH 7.4 and 5, and a new preparative gel-electrophoresis technique. The homogeneous enzyme is a glycoprotein containing 20% carbohydrate. The purified enzyme has Mr about 120 000 and it contains subunits of Mr 63 000. The pig endometrial arylsulphatase A shows many properties in common with those of arylsulphatases A purified from other sources. The similarities include their low isoelectric points, the anomalous time-activity relationships, multi-pH optima, inhibition by SO3(2-), SO4(2-), phosphate ions, metal ions and nucleoside phosphates, pH- and ionic-strength-dependent polymerization and amino acid composition.  相似文献   

13.
Pantothenase (EC 3.5.1.22) from Pseudomonas fluorescens UK-1 was purified to homogeneity as judged by disc-gel electrophoresis and isoelectric focusing. The purification procedure consisted of four steps: DEAE-Sephadex chromatography, (NH4)2SO4 precipitation, hydroxyapatite chromatography and preparative polyacrylamide-gel electrophoresis. Gel filtration on Ultrogel AcA 34 was used to determine the molecular weight, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis to study the subunit molecular weight. The enzyme appeared to be composed of two subunits with mol.wts. of approx. 50000 each. The total mol.wt. of the enzyme was thus about 100000. The isoelectric point was 4.7 at 10 degrees C.  相似文献   

14.
S-(2,4-dinitrophenyl)glutathione (Dnp-SG) ATPase of human erythrocytes has been purified to apparent homogeneity by affinity chromatography. In reduced denaturing gels, the subunit Mr value of Dnp-SG ATPase was found to be 38,000. Dinitrophenyl glutathione (Dnp-SG) stimulated the hydrolysis of ATP by the purified enzyme whereas oxidized glutathione (GSSG) did not, indicating that Dnp-SG and GSSG are transported from the erythrocytes by different transporters. Results of Western blot analysis using the antibodies against Dnp-SG ATPase subunits indicated that the enzyme was expressed in human liver, lung, placenta and pancreas.  相似文献   

15.
Glutathione reductase (E.C.1.8.1.7; GR) was purified from bovine erythrocytes and some characteristics properties of the enzyme were investigated. The purification procedure was composed of preparation of the hemolysate, ammonium sulfate fractionation, affinity chromatography on 2',5'-ADP Sepharose 4B, and gel filtration chromatography on Sephadex G-200. As a result of four consecutive procedures, the enzyme was purified 31,250-fold with a yield of 11.39%. Specific activity at the final step was 62.5 U (mg proteins)(-1). For the enzyme, optimum pH, optimum temperature, optimum ionic strength, and stable pH were found to be 7.3, 55 degrees C, 435 mM, 7.3, respectively. The molecular weight of the enzyme was found to be 118 kDa by Sephadex G-200 gel filtration chromatography and the subunit molecular weight was found to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In addition, Km and Vmax values were determined for glutathione disulfide (GSSG) and NADPH. Ki constants and inhibition types were established for glutathione (GSH) and NADP+. Also, effects of NADPH and GSSG were investigated on the enzyme activities.  相似文献   

16.
Soluble peroxidase (POD) from oil palm leaf was purified by (NH(4))(2)SO(4) precipitation, anion exchange chromatography and molecular exclusion chromatography. The purification grade obtained was 429 yielding 54% of the enzyme activity. Electrophoresis of purified enzyme under denatured conditions revealed M(r) of 48+/-2 kDa. It has an optimum pH of 5 and it exhibited very high pH and thermal stabilities. K(m) for guaiacol, ABTS and pyrogallol were 3.96, 1 and 0.84 mM, respectively. Immunocytochemical localization studies showed that soluble POD was mainly located in the vascular bundles and epidermis of leaf.  相似文献   

17.
1. A method for the purification of horse serum lecithin:cholesterol acyltransferase has been established. 2. The method involves the adsorption of the enzyme from diluted horse serum on DEAE-Sephadex A-50, (NH4)2SO4 fractionation, 1-butanol treatment, and chromatographic techniques of DEAE-Sepharose CL-6B, DEAE-Sephadex A-50, Affi-Gel blue and hydroxylapatite. 3. The resultant enzyme preparation essentially formed a single main band when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. 4. The final purification of the enzyme was 20,000-fold with 7% yield. 5. The apparent mol. wt of the enzyme was 64,000. 6. The activity of the enzyme was stable for 3 days at 0 degree C.  相似文献   

18.
The highly aggregated proteins precipitated by (NH4)2SO4 from the culture fluid of three strains of Streptococcus mutans gradually released less aggregated glucosyltransferase activities - dextransucrase and mutansucrase - which catalysed the synthesis of water-soluble and insoluble glucans from sucrose. Mutansucrase was eluted from a column of Sepharose 6B before dextransucrase. This activity was lost during subsequent dialysis and gel filtration, but there was a corresponding increase in dextransucrase activity which catalysed the formation of soluble glucan when incubated with sucrose alone, and insoluble glucan when incubated with sucrose and 1.55 M-(NH4)2SO4. Relative rates of synthesis of soluble and insoluble glucan in the presence of 1.55 M-(MH4)2SO4 were dependent upon the enzyme concentration: high concentrations favoured insoluble glucan synthesis. Insoluble glucans synthesized by mutansucrase or by dextransucrase in the presence of 1.55 M-(NH4)2SO4 were more sensitive to hydrolysis by mutanase than by dextranse, but soluble glucans were more extensively hydrolysed by dextranase than by mutanase. Partially purified dextransucrase sedimented through glycerol density gradients as a single symmetrical peak with an apparent molecular weight in the range 100000 to 110000. In the presence of 1.55 M-(NH4)2SO4, part of the activity sedimented rapidly as a high molecular weight aggregate. The results strongly suggest that soluble and insoluble glucans are synthesized by interconvertible forms of the same glucosyltransferase. The aggregated form, mutansucrase, preferentially catalyses (1 leads to 3)-alpha bond formation but dissociates during gel filtration to the dextransucrase form which catalyses (1 leads to 6)-alpha bond formation.  相似文献   

19.
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified 4419-fold to a specific activity of 58.3 nmol of coproporphyrinogen III formed/min per mg of protein (with pentacarboxyporphyrinogen III as substrate) from human erythrocytes by adsorption to DEAE-cellulose, (NH4)2SO4 fractionation, gel filtration, phenyl-Sepharose chromatography and polyacrylamide-gel electrophoresis. Progressive loss of activity towards uroporphyrinogens I and III occurred during purification. Experiments employing immunoprecipitation, immunoelectrophoresis and titration with solid-phase antibody indicated that all the uroporphyrinogen decarboxylase activity of human erythrocytes resides in one protein, and that the substrate specificity of this protein had changed during purification. The purified enzyme had a minimum mol.wt. of 39 500 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Gel filtration gave a mol.wt. of 58 000 for the native enzyme. Isoelectric focusing showed a single band with a pI of 4.60. Reaction with N-ethylmaleimide abolished both catalytic activity and immunoreactivity. Incubation with substrates or porphyrins prevented inactivation by N-ethylmaleimide. An antiserum raised against purified erythrocyte enzyme precipitated more than 90% of the uroporphyrinogen decarboxylase activity from human liver. Quantitative immunoprecipitation and crossed immunoelectrophoresis showed that the erythrocyte and liver enzymes are very similar but not identical. The differences observed may reflect secondary modification of enzyme structure by proteolysis or oxidation of thiol groups, rather than a difference in primary structure.  相似文献   

20.
Using an aqueous dispersion of [32P]phosphatidate as substrate we detected phosphatidate phosphatase (EC 3.1.3.4) activity in a cell-free extract of the yeast, Saccharomyces cerevisiae. The activity was found in both the membrane and the soluble fractions. The enzyme was purified from the soluble fraction about 600-fold. The purification procedure involved (NH4)2SO4 fractionation, poly(ethylene glycol) 6000 fractionation and column chromatography on DEAE-Sepharose, Sephadex G-100 and Blue-Sepharose. The purified enzyme almost absolutely required Mg2+ for activity. The molecular weight of the enzyme was estimated by analytical gel filtration on Sephadex G-100 to be approx. 75000. The enzyme was highly specific for phosphatidate. The apparent Km for phosphatidate was approx. 0.05 mM. The optimum pH was between 7.0 and 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号