首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excitation and contraction features of innervated and sympathetically denervated smooth muscle strips from cat's nictitating membrane have been studied by single sucrose gap arrangement. Increasing of smooth muscle cells sensitivity to drugs were accompanied by elevation of membrane response and the ability to generation of action potentials. Action potentials have been induced by agonists or high potassium concentration in external solution and spontaneously. In innervated muscle action potentials have been evoked as a result of depolarization by high potassium concentration of TEA blockade of potassium conductance. Induced and spontaneously generated action potentials were blocked by organic and inorganic antagonists of potential dependent Ca++ channels. In Ca-free solution action potentials were absent but might be supported by Ba++. Decrease of Na+ had no effect on smooth muscle excitability. It is supposed that activation of potential depended Ca++ channels in smooth muscle cells with pharmaco-mechanical coupling are under influence of sympathetic nerves.  相似文献   

2.
The ventroabdominal flexor muscles of the crustacean Atya lanipes, which are normally completely inexcitable, generate trains of overshooting calcium action potentials after exposure to the sulfhydryl reagents known as alpha, beta-unsaturated carbonyl compounds. The chemically induced action potentials are abolished by protein reagents specific for guanidino and amino groups. Attempts to induce excitability by the use of agents that block potassium conductance were without success. It is proposed that calcium channels are made functional by the covalent modification of a calcium protochannel, via the interaction between the introduced carbonyl group and existing arginine residues.  相似文献   

3.
Corticotropin-releasing hormone (CRH) is an important regulator of adrenocorticotropin (ACTH) secretion from pituitary corticotroph cells. The intracellular signaling system that underlies this process involves modulation of voltage-sensitive Ca2+ channel activity, which leads to the generation of Ca2+ action potentials and influx of Ca2+. However, the mechanisms by which Ca2+ channel activity is modulated in corticotrophs are not currently known. We investigated this process in a Hodgkin-Huxley-type mathematical model of corticotroph plasma membrane electrical responses. We found that an increase in the L-type Ca2+ current was sufficient to generate action potentials from a previously resting state of the model. The increase in the L-type current could be elicited by either a shift in the voltage dependence of the current toward more negative potentials, or by an increase in the conductance of the current. Although either of these mechanisms is potentially responsible for the generation of action potentials, previous experimental evidence favors the former mechanism, with the magnitude of the shift required being consistent with the experimental findings. The model also shows that the T-type Ca2+ current plays a role in setting the excitability of the plasma membrane, but does not appear to contribute in a dynamic manner to action potential generation. Inhibition of a K+ conductance that is active at rest also affects the excitability of the plasma membrane.  相似文献   

4.
The evidence that calcium (Ca) plays an important role in electrical activity and an essential role in excitation--contraction (E--C) coupling in crustacean muscles is reviewed. These muscles produce graded electrical and mechanical responses to applied depolarizations. Removal of Ca from the bath solution eliminates both responses. Addition of Ba2+ or Sr2+ to Ca-free saline restores membrane electrogenesis, and all-or-none action potentials can be induced. With Sr2+ vigorous contractions are produced, whereas Ba action potentials evoke minimal or no tension, showing that rapid depolarization of the membrane potential is not sufficient per se for E--C coupling in crab and barnacle muscle. Several inorganic (e.g., multivalent cations) and organic (e.g., aminoglycoside antibiotics) which block membrane Ca channels block electrogenesis and contraction. However, the "Ca antagonists" verapamil and D600 also block Ca uptake at intracellular storage sites, resulting in spontaneous contractions and the delayed relaxation of small contractions associated with residual Ca currents. The evidence that the Ca which enters the fibres needs to release Ca from intracellular storage sites to produce contractions is detailed and discussed. Finally, a model for E--C coupling is discussed. This model includes the sites and mechanisms of action for several chemicals which modify E--C coupling in crustacean muscle fibres.  相似文献   

5.
Xenopus spinal neurons serve as a nearly ideal population of excitable cells for study of developmental regulation of electrical excitability. On the one hand, the firing properties of these neurons can be directly examined at early stages of differentiation and membrane excitability changes as neurons mature. Underlying changes in voltage-dependent ion channels have been characterized and the mechanisms that bring about these changes are being defined. On the other hand, these neurons have been shown to be spontaneously active at stages when action potentials provide significant calcium entry. Calcium entry provokes further elevation of intracellular calcium via release from intracellular stores. The resultant transient elevations of intracellular calcium encode differentiation in their frequency. Recent studies have shown that different neuronal subpopulations enlist distinct mechanisms for regulation of excitability and recruit specific programs of differentiation by particular patterns of activity. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 190–197, 1998  相似文献   

6.
It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysiologically identical to the CaMKII-activated CLC-3 conductance in nonneuronal cells, and is absent in clc-3(-/-) mice. Systematically decreasing [Cl(-)](i) to mimic postnatal [Cl(-)](i) regulation progressively decreases the amplitude and decay time constant of spontaneous mEPSPs. This Cl(-)-dependent change in synaptic strength is absent in clc-3(-/-) mice. Using surface biotinylation, immunohistochemistry, electron microscopy, and coimmunoprecipitation studies, we find that CLC-3 channels are localized on the plasma membrane, at postsynaptic sites, and in association with NMDA receptors. This is the first demonstration that a voltage-dependent chloride conductance modulates neuronal excitability. By increasing postsynaptic potentials in a Cl(-) dependent fashion, CLC-3 channels regulate neuronal excitability postsynaptically in immature neurons.  相似文献   

7.
The nature and mechanisms of septohippocampal transmission have been elucidated by taking advantage of an in situ preparation in experiments with Sprague-Dawley rats under urethane. Both extracellular field potentials and intracellular recordings were made in CA1-3 regions of the hippocampus; and the hippocampal commissure and medial septum stimulated to evoke synaptic activity. Using muscarinic and nicotinic agonists and antagonists it was shown that both acetylcholine and medial septal activity can increase the excitability of pyramidal cells, mainly through muscarinic receptors. The effect of septal stimulation was enhanced by local application of physostigmine and reduced by intraventricular injections of hemicholinium. It was also shown that acetylcholine, when applied in the stratum pyramidale, can reduce the voltage and conductance changes observed during evoked inhibitory postsynaptic potentials (IPSP) without affecting the action of gamma-aminobutyric acid on membrane conductance and voltage. It is therefore proposed that acetylcholine can reduce evoked IPSPs through presynaptic inhibition. Evidence is also presented that medial septal stimulation can reduce the efficacy of evoked IPSPs. These observations provide further support for the existence of a cholinergic septohippocampal pathway.  相似文献   

8.
Summary This paper describes experiments carried out in the absence of sodium and calcium in the external solution. Frog atrial trabeculae were stimulated in current clamp with the double sucrose gap technique. The voltage responses looked like slow action potentials with a clear threshold. These responses were not suppressed in the presence of EGTA, in the presence of sodium or calcium channel blockers, or when sulfate ions replaced chloride. Guinea pig isolated ventricular myocytes were studied in whole cell clamp mode with a pathch pipette. Under current clamp, they displayed also voltage responses with a threshold. These responses were resistant to cadmium (5mm), and were suppressed by barium (0.5mm). A negative slope conductance is required to take into account these results. The membrane current in current clamp can be estimated by plotting the response in the phase plane. This analysis shows that on both types of preparations, the current responsible for the negative slope is not time dependent. This current is suppressed by barium. It can be concluded that it is the outward current flowing through the inward rectifying potassium channels. To confirm this hypothesis, data obtained in voltage clamp on the same preparations were introduced into a computer model to predict the response in current clamp. The results were in agreement with the experiments. Similar responses could be recorded and analyzed on skeletal muscle in isotonic potassium solution. These results show that the inward rectifier can induce by itself properties looking like excitability on different preparations. The physiological significance of this effect in normal conditions is discussed. The voltage responses described in this paper look similar to the slow action potentials on heart, which are sensitive to modifications of the calcium channels, but also of the potassium channels. Some implications in cardiac pharmacology are discussed.  相似文献   

9.
In many biological systems, cells display spontaneous calcium oscillations (CaOs) and repetitive action-potential firing. These phenomena have been described separately by models for intracellular inositol trisphosphate (IP3)-mediated CaOs and for plasma membrane excitability. In this study, we present an integrated model that combines an excitable membrane with an IP3-mediated intracellular calcium oscillator. The IP3 receptor is described as an endoplasmic reticulum (ER) calcium channel with open and close probabilities that depend on the cytoplasmic concentration of IP3 and Ca2+. We show that simply combining this ER model for intracellular CaOs with a model for membrane excitability of normal rat kidney (NRK) fibroblasts leads to instability of intracellular calcium dynamics. To ensure stable long-term periodic firing of action potentials and CaOs, it is essential to incorporate calcium transporters controlled by feedback of the ER store filling, for example, store-operated calcium channels in the plasma membrane. For low IP3 concentrations, our integrated NRK cell model is at rest at -70 mV. For higher IP3 concentrations, the CaOs become activated and trigger repetitive firing of action potentials. At high IP3 concentrations, the basal intracellular calcium concentration becomes elevated and the cell is depolarized near -20 mV. These predictions are in agreement with the different proliferative states of cultures of NRK fibroblasts. We postulate that the stabilizing role of calcium channels and/or other calcium transporters controlled by feedback from the ER store is essential for any cell in which calcium signaling by intracellular CaOs involves both ER and plasma membrane calcium fluxes.  相似文献   

10.
Abstract The cell membranes of the corpora allata of the cockroach Diploptera punctata contain voltage-dependent calcium channels. Depolarizing current injection into cells of the corpora allata in the presence of the calcium channel blockers, cadmium, cobalt or verapamil allows the production of multiple action potentials, as does treatment with the intracellular calcium chelator, BAPTA/AM. These results suggest that calcium currents are involved both in decreasing the excitability and in activating an outward current in cells of the corpora allata. Electrophysiological measurements also suggest a concomitant reduction in outward conductance following the multiple action potentials produced in the presence of the channel blockers or BAPTA/ AM. We hypothesize that the calcium current may play an important role in the regulation of intracellular calcium concentration and Juvenile Hormone biosynthesis.  相似文献   

11.
Small conductance (SK) channels are calcium-activated potassium channels that, when cloned in 1996, were thought solely to contribute to the afterhyperpolarisation that follows action potentials, and to control repetitive firing patterns of neurons. However, discoveries over the past few years have identified novel roles for SK channels in controlling dendritic excitability, synaptic transmission and synaptic plasticity. More recently, modulation of SK channel calcium sensitivity by casein kinase 2, and of SK channel trafficking by protein kinase A, have been demonstrated. This article will discuss recent findings regarding the function and modulation of SK channels in central neurons.  相似文献   

12.
The role of calcium and potassium conductances in electrogenesis of smooth muscle cells of the bovine basilar artery has been investigated using blocking agents of calcium and potassium channels both in the normal Krebs solution and in hyperpotassium solution under anelectrotonic repolarization of the cell membrane. It is shown that both voltage-operated calcium and potassium conductances participate in generation of gradual action potentials evoked by electrical stimulation. A higher contribution of potassium conductance into the total membrane conductance during depolarization is found to be the main factor interfered with development of full-size action potential.  相似文献   

13.
The last decade has witnessed an exponential increase in interest in one of the great mysteries of nerve cell biology: Specifically, how do neurons know where to place the ion channels that control their excitability? Many of the most important insights have been gleaned from studies on the voltage-gated potassium channels (Kvs) which underlie the shape, duration and frequency of action potentials. In this review, we gather recent evidence on the expression, trafficking and maintenance mechanisms which control the surface density of Kvs in different subcellular compartments of neurons and how these may be regulated to control cell excitability.  相似文献   

14.
The last decade has witnessed an exponential increase in interest in one of the great mysteries of nerve cell biology: Specifically, how do neurons know where to place the ion channels that control their excitability? Many of the most important insights have been gleaned from studies on the voltage-gated potassium channels (Kvs) which underlie the shape, duration and frequency of action potentials. In this review, we gather recent evidence on the expression, trafficking and maintenance mechanisms which control the surface density of Kvs in different subcellular compartments of neurons and how these may be regulated to control cell excitability.  相似文献   

15.
The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.  相似文献   

16.
Low voltage-activated (LVA) T-type calcium channels play critical roles in the excitability of many cell types and are a focus of research aimed both at understanding the physiological basis of calcium channel-dependent signaling and the underlying pathophysiology associated with hyperexcitability disorders such as epilepsy. These channels play a critical role towards neuronal firing in both conducting calcium ions during action potentials and also in switching neurons between distinct modes of firing. In this review the properties of the CaV3.1, CaV3.2 and CaV3.3 T-type channel isoforms is discussed in relation to their individual contributions to action potentials during burst and tonic firing states as well their roles in switching between firing states.  相似文献   

17.
Extracellular and intracellular microelectrode studies were conducted to test the actions and interactions of opiate agonists, antagonists, and procaine on action potentials in frog sartorius muscles. Extracellular studies showed that morphine, methadone, propoxyphene, and procaine all depressed action potential production. Low concentrations of naloxone or naltrexone antagonized the excitability depression produced by the three opiate agonists but not the depression produced by procaine. Intracellular studies revealed that certain concentrations of the opiate agonists produced a biphasic decline in the stimulus-induced increase in sodium conductance (gNa). Naloxone or naltrexone antagonized only the second phase of this decline. These results show that part of the excitability depression produced by opiate agonists is due to an action on opiate drug receptors.  相似文献   

18.
Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M(1) mAChR on CA1 pyramidal cells inhibit both small conductance Ca(2+)-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca(2+)calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M(1) mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.  相似文献   

19.
We survey the primary roles of calcium in retinal function, including photoreceptor transduction, transmitter release by different classes of retinal neuron, calcium-mediated regulation of gap-junctional conductance, activation of certain voltage-gated channels for K+ and C1, and modulation of postsynaptic potentials in retinal ganglion cells. We discuss three mechanisms for changing [Ca2+]i, which include flux through voltage-gated calcium channels, through ligand-gated channels, and by release from stores. The neuromodulatory pathways affecting each of these routes of entry are considered. The many neuromodulatory mechanisms in which calcium is a player are described and their effects upon retinal function discussed.  相似文献   

20.

Neuronal voltage-gated calcium channels play a pivotal role in the conversion of electrical signals into calcium entry into nerve endings that is required for the release of neurotransmitters. They are under the control of a number of cellular signaling pathways that serve to fine tune synaptic activities, including G-protein coupled receptors (GPCRs) and the opioid system. Besides modulating channel activity via activation of second messengers, GPCRs also physically associate with calcium channels to regulate their function and expression at the plasma membrane. In this mini review, we discuss the mechanisms by which calcium channels are regulated by classical opioid and nociceptin receptors. We highlight the importance of this regulation in the control of neuronal functions and their implication in the development of disease conditions. Finally, we present recent literature concerning the use of novel μ-opioid receptor/nociceptin receptor modulators and discuss their use as potential drug candidates for the treatment of pain.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号