首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress.  相似文献   

2.
《The Journal of cell biology》1993,120(5):1101-1112
Mammalian cells constitutively express a cytosolic and nuclear form of heat shock protein (hsp) 70, referred to here as hsp 73. In response to heat shock or other metabolic insults, increased expression of another cytosolic and nuclear form of hsp 70, hsp 72, is observed. The constitutively expressed hsp 73, and stress-inducible hsp 72, are highly related proteins. Still unclear, however, is exactly why most eukaryotic cells, in contrast to prokaryotic cells, express a novel form of hsp 70 (i.e., hsp 72) after experiencing stress. To address this question, we prepared antibodies specific to either hsp 72 or hsp 73 and have compared a number of biological properties of the two proteins, both in vivo and in vitro. Using metabolic pulse-chase labeling and immunoprecipitation analysis, both the hsp 72 and hsp 73 specific antibodies were found to coprecipitate a significant number of newly synthesized proteins. Such interactions appeared transient and sensitive to ATP. Consequently, we suspect that both hsp 72 and hsp 73 function as molecular chaperones, interacting transiently with nascent polypeptides. During the course of these studies, we routinely observed that antibodies specific to hsp 73 resulted in the coprecipitation of hsp 72. Similarly, antibodies specific to hsp 72 were capable of coprecipitating hsp 73. Using a number of different approaches, we show that the constitutively expressed, pre-existing hsp 73 rapidly forms a stable complex with the newly synthesized stress inducible hsp 72. As is demonstrated by double-label indirect immunofluorescence, both proteins exhibit a coincident locale within the cell. Moreover, injection of antibodies specific to hsp 73 into living cells effectively blocks the ability of both hsp 73 and hsp 72 to redistribute from the cytoplasm into the nucleus and nucleolus after heat shock. These results are discussed as they relate to the possible structure and function of the constitutive (hsp 73) and highly stress inducible (hsp 72) forms of hsp 70, both within the normal cell as well as in the cell experiencing stress.  相似文献   

3.
Inhibition of the mitochondrial release and nuclear translocation of apoptosis-inducing factor (AIF) by heat stress protein (HSP)72 may ameliorate apoptosis in renal epithelial cells exposed to a metabolic inhibitor. To evaluate this hypothesis, cells were transiently exposed to 5 mM sodium cyanide in the absence of medium glucose, a maneuver known to induce apoptosis. ATP depletion for 1-2 h resulted in the progressive accumulation of mitochondrial AIF in the cytosol of samples obtained by selectively permeabilizing the plasma membrane with digitonin. During recovery from ATP depletion, time-dependent nuclear AIF accumulation (but not cytochrome c, an F0F1 ATP synthase subunit, or talin) was observed in isolated nuclei. Nuclear AIF accumulation was associated with peripheral chromatin condensation and DNA degradation. Prior heat stress (HS) significantly reduced AIF leakage into the cytosol, decreased nuclear accumulation of AIF, and inhibited DNA degradation. HS also increased the interaction between AIF and HSP72 detected by immunoprecipitation. In ATP depleted cells, selective overexpression of human HSP72 reduced the leakage of mitochondrial AIF in a dose-dependent manner (r = 0.997). This study suggests that mitochondrial membrane injury and subsequent AIF release contribute to nuclear injury and apoptosis in ATP-depleted renal cells. HSP72, an antiapoptotic protein, inhibits cell injury in part by preventing mitochondrial AIF release and perhaps by decreasing its nuclear accumulation. heat stress; adenovirus; metabolic inhibitors; heat stress protein 60; DNA degradation  相似文献   

4.
Eukaryotes express several cytoplasmic HSP70 genes, and their encoded proteins participate in diverse cellular processes. Three cDNAs encoding highly expressed cytoplasmic HSP70 homologues from Pisum sativum were cloned and characterized. They were designated PsHSP71.2, PsHSC71.0, and PsHSP70b. These HSP70 genes have different expression profiles in leaves: PsHSP71.2 is observed only in response to heat stress, PsHSC71.0 is present constitutively, and PsHSP70b is weakly constitutively expressed, but induced strongly in response to heat stress. In addition to being heat induced, the PsHSP71.2 mRNA is also expressed in zygotic, but not maternal organs of developing pea seeds, while PsHSC71.0 and PsHSP70b mRNAs are present in maternal and zygotic organs throughout seed development. Immunoblot analysis of parallel protein samples detects a 70 kDa polypeptide in all samples, and a 72 kDa polypeptide that corresponds to the PsHSP71.2 gene product is observed in cotyledons beginning at mid-maturation and in axes beginning between late maturation and desiccation. This polypeptide is not detected in the seed coat. The 72 kDa polypeptide remains abundant in both cotyledons and axes through germination, but declines substantially between 48 and 72 h after the onset of imbibition. Differential control of HSP70 expression during heat stress, seed maturation, and germination is consistent with the hypothesis that there are functional distinctions between cytoplasmic HSP70s.  相似文献   

5.
An original method to induce heat stress was used to clarify the time course of changes in heat shock proteins (HSPs) in rat skeletal muscles during recovery after a single bout of heat stress. One hindlimb was inserted into a stainless steel can and directly heated by raising the air temperature inside the can via a flexible heater twisted around the steel can. Muscle temperature was increased gradually and maintained at 42 degrees C for 60 min. Core rectal and contralateral muscle temperatures were increased <1.5 degrees C during the heat stress. HSP60, HSP72, and heat shock cognate (HSC) 73 content in the slow soleus and fast plantaris in both limbs were determined immediately (0 h) and 2, 4, 8, 12, 24, 36, 48, or 60 h after heat stress. Within 0-4 h, all HSPs were approximately 1.5- to 2.2-fold higher in heat-stressed than contralateral soleus. Compared with the contralateral plantaris, the heat-stressed plantaris had a higher (1.5-fold) HSP60 content immediately and 2 h after heat stress and a higher (2.5- to 6.8-fold) HSP72 content between 24 and 48 h after heat stress. Plantaris HSC73 content was not affected by heat stress. This unique heat-stress method provides advantages over existing systems; muscle temperature can be controlled precisely during heating and the HSP response can be compared between muscles in heat-stressed and contralateral limbs of individual rats. Results show a differential response of HSPs in the soleus and plantaris during recovery after heat stress; soleus demonstrated a more rapid and broader HSP response to heat stress than plantaris.  相似文献   

6.
Nuclear localization and the heat shock proteins   总被引:1,自引:0,他引:1  
The highly conserved heat shock proteins (HSP) belong to a subset of cellular proteins that localize to the nucleus. HSPs are atypical nuclear proteins in that they localize to the nucleus selectively, rather than invariably. Nuclear localization of HSPs is associated with cell stress and cell growth. This aspect of HSPs is highly conserved with nuclear localization occurring in response to a wide variety of cell stresses. Nuclear localization is likely important for at least some of the heat shock proteins’ protective functions; little is known about the function of the heat shock proteins in the nucleus. Nuclear localization is signalled by the presence of a basic nuclear localization sequence (NLS) within a protein. Though most is known about HSP 72’s nuclear localization, the NLS(s) has not been definitively identified for any of the heat shock proteins. Likely more is involved than presence of a NLS; since the heat shock proteins only localize to the nucleus under selective conditions, nuclear localization must be regulated. HSPs also function as chaperons of nuclear transport, facilitating the movement of other macromolecules across the nuclear membrane. The mechanisms involved in chaperoning of proteins by HSPs into the nucleus are still being identified.  相似文献   

7.
8.
Mechanisms of HSP72 release   总被引:1,自引:0,他引:1  
Currently two mechanisms are recognized by which heat shock proteins (HSP) are released from cells; a passive release mechanism, including necrotic cell death, severe blunt trauma, surgery and following infection with lytic viruses, and an active release mechanism which involves the non classical protein release pathway. HSPs are released both as free HSP and within exosomes. This review covers recent findings on the mechanism by which stress induces the release of HSP72 into the circulation and the biological significance of circulating HSP72 to host defense against disease.  相似文献   

9.
The c-myc oncogene and its viral counterpart v-myc encode phosphoproteins which have been located within cell nuclei, excluding nucleoli. We have expressed the c-myc gene under the simian virus 40 early promoter and studied the distribution of its protein product in transient expression assays in COS, HeLa, and 293 cells. We found three distinct patterns of c-myc immunofluorescence in the transfected cells: one-third of the c-myc-positive cells displayed a diffuse nuclear distribution, and in two-thirds of the cells the c-myc fluorescence was accumulated either in small amorphous or in large multilobed phase-dense nuclear structures. Unexpectedly, these structures also stained for the HSP70 heat shock protein in both heat-shocked and untreated cells. Our results indicate that both transient and stable overexpression of either the c-myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein. Interestingly, the closely related N-myc protein does not stimulate substantial nuclear expression of the HSP70 protein. Studies with chimeric myc proteins revealed that polypeptide sequences encoded by the second exon of c-myc are involved in colocalization with HSP70.  相似文献   

10.
Nuclear accumulation of heat shock protein (HSP) 72 occurs after cardiac ischemia. This nuclear accumulation of HSP72 with stress occurs in other tissues and species. We postulated that nuclear accumulation of HSP72 was important for the protective effect of HSP72 and that phosphorylation of a single tyrosine (Y(524)) regulated nuclear accumulation of HSP72. Western blots of immunoprecipitated HSP72 from Cos-1 cells demonstrated that tyrosine becomes phosphorylated after heat shock. Treatment with the tyrosine kinase inhibitor geldanamycin blocked nuclear accumulation of HSP72 with heat shock. Two epitope-tagged constructs were made: M17 converting Y(524) to aspartic acid (pseudophosphorylation) and M18 converting Y(524) to phenylalanine. When transfected into Cos-1 cells, M17 accumulates more rapidly and M18 less rapidly than wild-type (WT) HSP72 in the nucleus following heat shock. Cells expressing M18 had less viability after heat shock at 43.5 degrees C than other constructs. After heat shock at 45 degrees C, cells expressing M17 had superior survival compared with WT and M18. These data suggest that phosphorylation at Y(524) facilitates nuclear accumulation of HSP72 following heat stress, and substitution of aspartic acid at Y(524) enhances resistance to heat-shock injury.  相似文献   

11.
Heat shock protein (HSP)72, the inducible form of HSP70, protects cells against a variety of injuries, but underlying mechanisms are poorly defined. To investigate the protective effects of HSP72, multiple clones expressing wild-type (WT) HSP72 and two mutants with defective nucleolar and nuclear localization (M45 and 985A, respectively) were made with the tet-off system in C2C12 cells. Four different parameters of cell function/injury were examined after simulated ischemia: protein synthesis, polysome formation, DNA synthesis, and lactate dehydrogenase (LDH release). Overexpression of WT HSP72 was also compared to nontransfected C2C12 cells. As expected, overexpression of HSP72 protected against simulated ischemia and reoxygenation for all parameters. In contrast, both M45 and 985A showed abnormal protein synthesis and polysome formation, both after simulated ischemia and under control conditions. Total RNA was slightly reduced in M45 and 985A at baseline, but 1 h after hypoxia, RNA levels were protected in all clones but significantly decreased in nontransfected C2C12 cells. Clones expressing 985A had nuclear retention of mRNA, suggesting that HSP72 is needed for nuclear export of RNA. All clones, both WT and mutant, had protection of DNA synthesis compared to C2C12 cells, but 985A had greater release of LDH after injury than any other group. These results support a multifactoral protective effect of HSP72, some aspects dependent on nuclear localization with stress and some not. The protection of protein synthesis and polysome formation, and abnormalities in these with the mutants, support a role for HSP72 in these processes both in the normal cell and in injury.  相似文献   

12.
c-Src and HSP72 interact in ATP-depleted renal epithelial cells   总被引:1,自引:0,他引:1  
Disruption of cell contact sites during ischemiacontributes to the loss of organ function in acute renal failure.Because prior heat stress protects cell contact sites in ATP-depleted renal epithelial cells in vitro, we hypothesized that heat shock protein 72 (HSP72), the major inducible cytoprotectant in mammalian cells, interacts with protein kinases that regulate cell-cell andcell-matrix interactions. ATP depletion increased the content ofTyr416 Src, the activated form of this kinase. c-Srcactivation was associated with an increase in the tyrosinephosphorylation state of -catenin, paxillin, and vinculin, threec-Src substrate proteins that localize to and regulate cell contactsites. Prior heat stress inhibited c-Src activation and decreased thedegree of tyrosine phosphorylation of all three Src substrates duringATP depletion and/or early recovery. HSP72 coimmunoprecipitated withc-Src only in cells subjected to heat stress. ATP depletion markedlyincreased the interaction between HSP72 and c-Src, supporting thehypothesis that HSP72 regulates Src kinase activity. These resultssuggest that alterations in the tyrosine phosphorylation state ofproteins located at the cell-cell and cell-matrix interface mediate, at least in part, the functional state of these structures during ATPdepletion and may be modulated by interactions between HSP72 and c-Src.

  相似文献   

13.
Cellular heat stress results in elevated heat-shock protein (HSP) synthesis and in thermotolerance development. Recently, we demonstrated that protein glycosylation is also an integral part of the stress response with the identification of two major stress glycoproteins, GP50, associated with thermotolerance, and P-SG67, the “prompt” stress glycoprotein induced immediately during acute heat stress. In the present study, we characterized the subcellular location and redistribution of these proteins during the cellular injury and recovery phase. In unheated and heated CHO cells, both stress glycoproteins were present in each subcellular fraction isolated by differential centrifugation. However, the subcellular redistribution in the course of cellular recovery after heat stress was specific for each stress glycoprotein. GP50 was present in all subcellular fractions before heat stress, but showed relatively little redistribution after heat stress. By 24 h of recovery following stress, GP50 showed partial depletion from lysosomes and microsomes, and was mainly present in the mitochondria. Glycosylated P-SG67 was redistributed in a more complex fashion. It was seen predominantly in the lysosomes and microsomes immediately following heat-stress, but after 6 h of recovery following heat stress, it largely disappeared from the microsomes and was present mainly in the cytosol. By 24 h of recovery following heat stress, it was found predominantly in the nucleus-rich fraction and mitochondria. The localization of GP50 and P-SG67 by subcellular fractionation is consistent with immunolocalization studies and contrasts with the translocation of HSP70 after heat stress from cytosol to nuclei and nucleoli. These results reflect a characteristic distribution for each stress glycoprotein; their presence in virtually all subcellular fractions suggests multifunctional roles for the various stress glycoproteins in the cellular heat stress response. J. Cell. Biochem. 66:98–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
HSP40s are a subfamily of heat shock proteins (HSPs) and play important roles in regulation of cell proliferation, survival and apoptosis by serving as chaperones for HSP70s. Up to date hundreds of HSP40 proteins derived from various species ranging from Escherichia coli to homo sapiens have been identified. Here we report the cloning and characterization of a novel human type C DnaJ homologue, HDJC9, containing a typical N-terminal J domain. HDJC9 is upregulated at both mRNA and protein levels upon various stress and mitogenic stimulations. HDJC9 is mainly localized in cell nuclei under normal culture conditions while it is transported into cytoplasm and plasma membrane upon heat shock stress through a non-classical and lipid-dependent pathway. HDJC9 can interact with HSP70s and activate the ATPase activity of HSP70s, both of which are dependent on the J domain. Our data suggest that HDJC9 is a novel cochaperone for HSP70s.  相似文献   

16.
17.
The purpose of the present study was to determine whether endogenous factor(s) contributes to the expression of heat shock proteins (HSPs) during the early developmental stages of rat skeletal muscles. HSP72 was expressed in both the soleus and plantaris muscles at embryonic day 22 (E22). On the basis of myosin heavy chain (MHC) immunohistochemistry, HSP72 was specifically expressed in slow type I fibers in both muscles. These slow fibers were observed throughout the entire cross section of the soleus muscle and only in the deep region (close to the bone) of the plantaris muscle. These results indicate that the expression of HSP72 is related to endogenous factors associated with type I fibers, because E22 rats have minimal exogenous influences and the soleus and plantaris muscles of E22 rats have similar metabolic and contractile profiles at this stage of development. We then examined the changes in HSP72 and heat shock cognate (HSC) 73 in the same two muscles from E22 to postnatal day 56 via Western blotting. The level of HSP72 in the soleus muscle gradually increased in parallel with the increment in the type I MHC isoform. Compared with the soleus, only a small amount of HSP72 could be detected in the plantaris muscle throughout the developmental period. For both muscles, HSC73 reached levels observed in adult muscles at postnatal day 3, and these levels were unchanged thereafter. These results indicate that the expression of HSP72, but not HSC73, is influenced by both endogenous and exogenous factors during the embryonic and early developmental periods.  相似文献   

18.
Two complementary deoxyribonucleic acid (cDNA) clones encoding heat shock cognate 70 (HSC70) and inducible heat shock protein 70 (HSP70) were isolated from the liver of Wuchang bream (Megalobrama amblycephala Y.) using RT-PCR and rapid amplification of cDNA ends (RACE). They were named Ma-HSC70 and Ma-HSP70, respectively. The cDNAs were 2336 and 2224 bp in length [not including poly (A)] and contained 1950 and 1932 bp open reading frames (ORFs), respectively. The ORFs encoded proteins of 649 and 643 amino acids with predicted molecular weights of 71.24 and 70.52 kDa, and theoretical isoelectric points of 5.25 and 5.30, respectively. Genomic DNA structure analysis revealed that Ma-HSC70 gene contained seven introns with all introns conforming to the GT/AG rule whereas Ma-HSP70 gene did not contain any intron in the coding region. Amino acid sequence analysis indicated that both Ma-HSC70 and Ma-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (NLS) and cytoplasmic characteristic motif (EEVD). Homology analysis revealed that Ma-HSC70 shared more than 93.0% identity with the known HSC70s of other vertebrates, while Ma-HSP70 shared more than 85.0% identity with the known HSP70s of other vertebrates, and Ma-HSC70 and Ma-HSP70 shared 86.5% identity. Bioinformatics analysis indicated that the proteins encoded by Ma-HSC70 and Ma-HSP70 genes were hydrophilic, rich in B cells antigenic sites, without any signal peptide or transmembrane region. The two proteins also contained many protein kinase C phosphorylation sites, N-myristoylation sites, casein kinase II phosphorylation sites, and N-glycosylation sites, predicting that they could play essential roles in protein folding, translocation, intracellular localization, signal transduction and regulation. The predominant secondary structures of the two proteins were α-helix and random coil. Fluorescent real-time quantitative RT-PCR was used to study the effects of heat shock (34 °C), crowding stress (100 g L?1) and challenge with bacteria Aeromonas hydrophila on the mRNA expression of the two HSP70s in Wuchang bream liver. The results indicated that, during 24 h stress, Ma-HSC70 mRNA expression decreased at first and then rose to the level before stress under heat shock and crowding stress, but Ma-HSP70 mRNA expression increased at first and then decreased under heat stress, and appeared to increase continuously under crowding stress. After bacterial challenge, the mRNA levels of both Ma-HSC70 and Ma-HSP70 increased at first and then decreased. The cloning and expression analysis of the two HSP70s provide theoretical basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions of Wuchang bream.  相似文献   

19.
We have used mitogenic lectin (PHA) and a monoclonal antibody (OKT3) to stimulate human peripheral blood (G0) lymphocytes, in the presence of monocytes, and have found two major preferentially synthesized proteins, 73 and 95 kD, which are induced by the mitogens. The elevated synthesis of both proteins begins approximately 4-6 h after mitogen addition (early to mid G0/G1) before entry into first S phase. Maximum synthesis of both proteins is reached by 12 h after mitogen addition when P95 synthesis represents approximately 4%, and P73 approximately 2%, of the total protein synthesis, compared with less than 0.5% for each protein in cells cultured without mitogen. Thus, the proteins appear to be major components of activated cells. We find that both P73 and P95 are induced by heat stress as well as mitogenic stimulation. The induction of the proteins is not affected by either deleting glucose from the culture media or, alternatively, by supplementing it. Using polyclonal antibodies prepared to each of the proteins isolated from mitogen activated cells and monoclonal antibodies that were raised to heat shock proteins, we are able to show that P95 is electrophoretically and immunologically identical to the HSP 90 induced by heat stress. P73 is one of the 70 kD HSPs, (termed HSC 70; Pelham, H. R. B. 1986. Cell. 46: 959-961), but is different from the most strongly heat inducible form of HSP 70 (72 kD). The distribution of both proteins in subcellular fractions of mitogen activated lymphocytes is similar to the reported localization of the respective HSP's in other cell types. The results suggest that HSP 90 and HSC 70 may have functional roles in stress response and growth processes of human lymphocytes.  相似文献   

20.
The small heat shock/alpha-crystallin protein p26 undergoes nuclear translocation in response to stress in encysted embryos of the brine shrimp Artemia franciscana. About 50% of total p26 translocates to nuclei in embryos treated with heat shock or anoxia, and in embryo homogenates incubated at low pH. Nuclear fractionation shows that the majority of nuclear p26 and a nuclear lamin are associated with the nuclear matrix fraction. To further explore the roles of p26 and other HSPs in stabilizing nuclear matrix proteins (NMPs), nuclear matrices from control, and heat-shocked embryos were disassembled in urea and evaluated by one and two-dimensional (2-D) gel electrophoresis and Western immunoblotting after reassembling. Nuclear lamins were present only in reassembled fractions and, in the case of heat shock, p26 and HSP70 were also present. HSP90 was not detected in any nuclear fraction. Confocal microscopy on isolated nuclei and nuclear matrix preparations from control and heat-shocked embryos showed that the majority of p26 and a nuclear lamin share similar nuclear distributions. The combination of microscopy and fractionation results suggests that p26 and HSP70 play a role in the protection of nuclear lamins within the nuclear matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号