首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
The vertebrate brain is among the most complex biological structures of which the organization remains unclear. Increasing numbers of studies have accumulated on the molecular basis of midbrain/hindbrain development, yet relatively little is known about forebrain organization. Nested expression among Otx and Emx genes has implicated their roles in rostral brain regionalization, but single mutant phenotypes of these genes have not provided sufficient information. In order to genetically determine the interaction between Emx and Otx genes in forebrain development, we have examined Emx2(-/-)Otx2(+/-) double mutants and Emx2 knock-in mutants into the Otx2 locus (Otx2(+/Emx2)). Emx2(-/-)Otx2(+/-) double mutants did not develop diencephalic structures such as ventral thalamus, dorsal thalamus/epithalamus and anterior pretectum. The defects were attributed to the loss of the Emx2-positive region at the three- to four-somite stage, when its expression occurs in the laterocaudal forebrain primordia. Ventral structures such as the hypothalamus, mammillary region and tegmentum developed normally. Moreover, dorsally the posterior pretectum and posterior commissure were also present in the double mutants. In contrast, Otx2(+/Emx2) knock-in mutants displayed the majority of these diencephalic structures; however, the posterior pretectum and posterior commissure were specifically absent. Consequently, development of the dorsal and ventral thalamus and anterior pretectum requires cooperation between Emx2 and Otx2, whereas Emx2 expression is incompatible with development of the commissural region of the pretectum.  相似文献   

4.
Emx1 and Emx2 genes are known to be involved in mammalian forebrain development. In order to investigate the evolution of the Emx gene family in vertebrates, a phylogenetic analysis was carried out on the Emx genes sequenced in man, mice, frogs, coelacanths and zebrafish. The results demonstrated the existence of two clades (Emx1 and Emx2), each grouping one of the two genes of the investigated taxa. The only exception was the zebrafish Emx1-like gene which turned out to be a sister group to both the Emx1 and Emx2 clusters. Such striking sequence divergence observed for the zebrafish Emx1-like gene could indicate that it is not orthologous to the other Emx1 genes, and therefore, in vertebrates there must be three Emx genes. Alternatively, if the zebrafish emx1 gene is orthologous to the tetrapod one, it must have undergone to strong diversifying selection.  相似文献   

5.
Emx family homeobox genes, Emx1 and Emx2, play an essential role in rostral brain development in mammalian embryos. Here we report a zebrafish emx family gene, emx1, which is more similar to the mouse Emx1 gene than the previously reported zebrafish emx1 gene; we propose to rename that gene emx3. The expression of emx1 is first detected around the 10-somite stage in the pineal gland (epiphysis) primodium in the developing anterior brain and in the pronephric primodium within the intermediate mesoderm. emx1 expression in the epiphysis has not been reported in other species. Expression in the epiphysis is suppressed at 23 h post-fertilization (hpf) in the floating head (flh) mutant, in which development of the epiphysis is impaired. Subsequently, emx1 is expressed in the telencephalon, as reported in mammals, and can be detected in the olfactory placode and in a small group of cells in the forebrain at 25 hpf. In the mesoderm, emx1 expression is gradually concentrated in the posterior pronephric duct during somitogenesis, and becomes expressed predominantly in the urogenital opening at 25 hpf. Thus, emx1 displays a unique expression pattern that is distinct from the patterns of emx2 and emx3.  相似文献   

6.
Dentate gyrus and hippocampus as centers for spatial learning, memory and emotional behaviour have been the focus of much interest in recent years. The molecular information on its development, however, has been relatively poor. To date, only Emx genes were known to be required for dorsal telencephalon development. Here, we report on forebrain development in the extra toes (Xt(J)) mouse mutant which carries a null mutation of the Gli3 gene. This defect leads to a failure to establish the dorsal di-telencephalic junction and finally results in a severe size reduction of the neocortex. In addition, Xt(J)/Xt(J) mice show absence of the hippocampus (Ammon's horn plus dentate gyrus) and the choroid plexus in the lateral ventricle. The medial wall of the telencephalon, which gives rise to these structures, fails to invaginate during embryonic development. On a molecular level, disruption of dorsal telencephalon development in Xt(J)/Xt(J) embryos correlates with a loss of Emx1 and Emx2 expression. Furthermore, the expression of Fgf8 and Bmp4 in the dorsal midline of the telencephalon is altered. However, expression of Shh, which is negatively regulated by Gli3 in the spinal cord, is not affected in the Xt(J)/Xt(J) forebrain. This study therefore implicates Gli3 as a key regulator for the development of the dorsal telencephalon and implies Gli3 to be upstream of Emx genes in a genetic cascade controlling dorsal telencephalic development.  相似文献   

7.
SUMMARY We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2 , and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.  相似文献   

8.
9.
10.
11.
We cloned two homeobox genes, Emx1 and Emx2, related to empty spiracles, a gene expressed in very anterior body regions during early Drosophila embryogenesis, and studied their expression in mouse embryos. Emx1 expression is detectable from day 9.5 of gestation whereas Emx2 appears to be already expressed in 8.5 day embryos. Both genes are expressed in the presumptive cerebral cortex and olfactory bulbs. Emx1 is expressed exclusively there, whereas Emx2 is also expressed in some neuroectodermal areas in embryonic head including olfactory placodes in earlier stages and olfactory epithelia later in development.  相似文献   

12.
The expression domains of genes implicated in forebrain patterning often share borders at specific anteroposterior positions. This observation lies at the heart of the prosomeric model, which proposes that such shared borders coincide with proposed compartment boundaries and that specific combinations of genes expressed within each compartment are responsible for its patterning. Thus, genes such as Emx1, Emx2, Pax6, and qin (Bf1) are seen as being responsible for specifying different regions in the forebrain (diencephalon and telencephalon). However, the early expression of these genes, before the appearance of putative compartment boundaries, has not been characterized. In order to determine whether they have stable expression domains before this stage, we have compared mRNA expression of each of the above genes, relative both to one another and to morphological landmarks, in closely staged chick embryos. We find that, between HH stage 8 and HH stage 13, each of the genes has a dynamic spatial and temporal expression pattern. To test for autonomy of gene expression in the prosencephalon, we grafted tissue from this region to more caudal positions in the neural tube and analyzed for expression of Emx1, Emx2, qin, or Pax6. We find that gene expression is autonomous in prosencephalic tissue from as early as HH stage 8. In the case of Emx1, our data suggest that, from as early stage 8, presumptive telencephalic tissue also is committed to express this gene. We propose that early patterning along the anteroposterior axis of the presumptive telencephalon occurs across a field that is subdivided by different combinations of genes, with some overlapping areas, but without either sharp boundaries or stable interfaces between expression domains.  相似文献   

13.
We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm.  相似文献   

14.
Emx1 and Emx2 are mouse cognates of the Drosophila head gap gene, ems. Previously we have reported that the dentate gyrus is affected in Emx2 single mutants, and defects are subtle in Emx1 single mutants. In most of the cortical region Emx1 and Emx2 functions would be redundant. To test this assumption here we examined the Emx1 and Emx2 double mutant phenotype. In the double mutants the archipallium was transformed into the roof without establishing the signaling center at the cortical hem and without developing the choroid plexus. We propose that Emx1 and Emx2 cooperate in generation of the boundary between the roof and archipallium; these genes develop the archipallium against the roof. This process probably occurs immediately after the neural tube closure concomitant with the Emx1 expression.  相似文献   

15.
16.
WNT/beta-catenin signaling has an established role in nephron formation during kidney development. Yet, the role of beta-catenin during ureteric morphogenesis in vivo is undefined. We generated a murine genetic model of beta-catenin deficiency targeted to the ureteric bud cell lineage. Newborn mutant mice demonstrated bilateral renal aplasia or renal dysplasia. Analysis of the embryologic events leading to this phenotype revealed that abnormal ureteric branching at E12.5 precedes histologic abnormalities at E13.5. Microarray analysis of E12.5 kidney tissue identified decreased Emx2 and Lim1 expression among a small subset of renal patterning genes disrupted at the stage of abnormal branching. These alterations are followed by decreased expression of genes downstream of Emx2, including Lim1, Pax2, and the ureteric tip markers, c-ret and Wnt 11. Together, these data demonstrate that beta-catenin performs essential functions during renal branching morphogenesis via control of a hierarchy of genes that control ureteric branching.  相似文献   

17.
18.
Emx1 is a mouse homologue of the Drosophila homeobox gene empty spiracles. Its expression is limited to the neurons in developing and adult cerebral cortex and hippocampus. Because of the highly restricted expression pattern of the Emx1 gene, it would be quite desirable to characterize the promoter of the Emx1 for directing foreign gene expression in the transgenic mouse. We report here that we have achieved the Emx1-specific expression in transgenic mice by inserting the lacZ reporter and cre genes directly into the exon 1 of the Emx1 gene using embryonic stem (ES) cell technology. The distribution of the beta-galactosidase activity in the transgenic mice was consistent with the published results obtained using in situ hybridization and immunohistochemistry. Furthermore, we have demonstrated that Cre protein was present in the cerebral cortex of the transgenic mice and was able to mediate loxP-specific recombination in vitro. The creation of this line of cre transgenic mice, and the demonstration that the insertion site located in the exon 1 of the Emx1 gene could render foreign genes a specific expression pattern restricted to the developing and adult cerebral cortex and hippocampus, should be conducive to further studies of the effect of a gene mutation or overexpression upon the development and plasticity of cerebral cortex and hippocampus.  相似文献   

19.
20.
In the former part of the review the principal available data aboutHox genes, their molecular organisation and their expression in vertebrate embryos, with particular emphasis for mammals, are briefly summarized.In the latter part we analysed the expression of four mouse homeobox genes related to twoDrosophila genes expressed in the developing head of the fly: Emx1 and Emx2, related toems, and Otx1 and Otx2, related tootd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号