首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the molecular basis of the origin of complete and mosaic mutants, pBR322 plasmid with one- or two-stranded DNA damage was constructed by limited chemical modification of the plasmid DNA. Damage of one strand of DNA resulted in induction of mosaic mutants. Data were obtained indicating that complete mutations arise as a result of damage of two strands in the region of the mutagenized gene.  相似文献   

2.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

3.
Topoisomerases are ubiquitous proteins found in all three domains of life. They change the topology of DNA via transient breaks on either one or two of the DNA strands to allow passage of another single or double DNA strand through the break. Topoisomerases are classified into two types: type I enzymes cleave one DNA strand and pass either one or two DNA strands through the break before resealing it, while type II molecules cleave both DNA strands in concert and pass another double strand through the break followed by religation of the double strand break. Here we review recent work on the structure of type I enzymes. These structural studies are providing atomic details that, together with the existing wealth of biochemical and biophysical data, are bringing our understanding of the mechanism of action of these enzymes to the atomic level.  相似文献   

4.
Direction of DNA entry in competent cells of Bacillus subtilis   总被引:2,自引:0,他引:2  
Direction of DNA entry in Bacillus subtilis competent cells was studied using molecules in which only one of the two strands was radioactively labelled. The label was either distributed homogeneously or was localized in a small region of the strand, in the centre or at one of the ends. Regardless of the distribution and the position of the label, similar amounts of radioactivity were taken up by the cells exposed to the labelled molecules. This suggests that DNA enters B. subtilis either by two different uptake systems having opposite polarities, or by a single non-polar system.  相似文献   

5.
Region- and strand-specific mutagensis of a recombinant plasmid   总被引:9,自引:0,他引:9  
P E Giza  D M Schmit  B L Murr 《Gene》1981,15(4):331-342
Techniques were developed to mutagenize a single DNA strand in a specific region of the tetracycline-resistance (tetr) gene of the plasmid pKB280 that also carries the lambda repressor gene. Separate annealings of complementary single strands gave two isomeric, circular plasmids containing a 275-nucleotide, single-stranded region (gap) in the tetr gene. One of the isomeric, gapped plasmids was mutagenized specifically with sodium bisulfite such that an estimated 98% of the molecules had suffered at least one C to U conversion in the gap. The mutagenized gap was filled in with DNA polymerase. These molecules transformed Escherichia coli strain MM294 to lambda-immunity with the same frequency as unmutagenized, gap-filled pKB280. Of the lambda-immune transformants, 32% were Tcr and 68% were Tcs. Restriction analysis of plasmids from some Tcs transformants showed losses of restriction sites within the gap and at the gap termini, but none outside the gap. No deletions were detected.  相似文献   

6.
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.  相似文献   

7.
Specific strand loss in N-2-acetylaminofluorene-modified DNA   总被引:15,自引:0,他引:15  
N-2-Acetylaminofluorene (AAF), a well-known chemical carcinogen, when covalently linked to guanine residues constitutes a premutagenic lesion that is converted in vivo into frameshift mutations. In Escherichia coli, it is thought that -AAF adducts block the replication fork and that the mutagenic processing of the -AAF adducts is mediated by the SOS response. The construction in vitro of plasmids containing -AAF adducts in one strand only of a double-stranded DNA molecule enabled us to investigate the segregation of the strands and the mutagenicity of the lesions in vivo. The two DNA strands were "genetically labelled" by means of a single base-pair mismatch in the tetracycline-resistance gene, one strand carrying the wild-type allele and the other strand a mutant tetracycline-sensitive allele. The two strands contained either no -AAF adducts, -AAF adducts in one strand or -AAF adducts in both strands. When such constructions are used to transform bacterial cells the following are found. When no -AAF adducts are present on either strand of the DNA, a mixture of plasmids having information from both parent strands is found in 80% of the transformed bacterial clones. With -AAF adducts present in one strand only, in 90% of the transformants there is a consistent loss of the parent strand information that contained the -AAF adducts. In the constructions having -AAF adducts in both strands, the transformed bacteria carry either one or the other allele in a pure form. Our results suggest that when blocking lesions (-AAF adducts) are present in one strand only, they trigger the specific loss of that strand. The forward mutation frequency (i.e. the tetracycline-resistance gene inactivation frequency) was found to be more than ten times lower when the -AAF adducts are bound to one strand only compared with the situation where both strands carry the premutagenic lesions. Moreover, when the isolated mutants were sequenced, the mutations were found to consist of a mixture of true -AAF-induced mutations (i.e. -1 or -2 frameshift mutation at previously determined mutation hot spots) and of mutations that are not targeted at -AAF adducts. We suggest that these "background" mutants arose from the mutagenic processing of cryptic lesions present in our DNA. The low mutagenic efficiency of -AAF adducts, when present in one strand only of a duplex DNA, most probably results from the above-described loss of the damaged strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The structure of replicating adenovirus 2 DNA molecules   总被引:40,自引:0,他引:40  
R L Lechner  T J Kelly 《Cell》1977,12(4):1007-1020
Adenovirus 2 (Ad2)-infected KB cells were exposed to a 2.5 min pulse of 3H-thymidine at 19 hr after infection. The labeled DNA molecules were separated from cell DNA and mature Ad2 DNA by sucrose gradient sedimentation and CsCI equilibrium centrifugation under conditions designed to minimize branch migration and hybridization of single strands. Electron microscopy-of fractions containing radioactivity revealed two basic types of putative replicating molecules: Ad2 length duplex DNA molecules with one or more single-stranded branches (type I) and Ad2 length linear DNA molecules with a single-stranded region extending a variable distance from one end (type II). Length measurements, partial denaturation studies and 3′ terminal labeling experiments were consistent with the following model for Ad2 DNA replication. Initiation of DNA synthesis occurs at or near an end of the Ad2 duplex. Following initiation, a daughter strand is synthesized in the 5′ to 3′ direction, displacing the parental strand with the same polarity. This results in the formation of a branched replicating molecule (type I). Initiations at the right and left molecular ends are approximately equal in frequency, and multiple initiations on the same replicating molecule are common. At any given displacement fork in a type I molecule, only one of the two parental strands is replicated. Two nonexclusive mechanisms are proposed to account for the replication of the other parental strand. In some cases, before completion of a round of displacement synthesis initiated at one end of the Ad2 duplex, a second initiation will occur at the opposite end. In these doubly initiated molecules, both parental strands serve as templates for displacement synthesis. Two type II molecules are generated when the oppositely moving displacement forks meet. Alternatively, displacement synthesis may proceed to the end of the Ad2 duplex, resulting in the formation of a daughter duplex and a parental single strand. Replication of the displaced parental strand is then initiated at or near its 3′ terminus, producing a type II molecule. Daughter strand synthesis proceeds in the 5′ to 3′ direction in type II molecules generated by either mechanism, and completion of synthesis results in the formation of a daughter duplex.  相似文献   

9.
A Oka  K Sugimoto  H Sasaki  M Takanami 《Gene》1982,19(1):59-69
A method for introducing base substitutions in defined regions of plasmid DNA has been developed. In principle, a circular heteroduplex DNA containing a gap is constructed by annealing of two kinds of linear molecules derived from the same plasmid: One is the molecule shortened either by exonucleolytic digestion from the termini generated at a restriction site or by removal of a region flanked by two restriction sites, and the other the full-length molecule linearized at a different site. The deleted region in the shorter linear molecule becomes a single-stranded gap in the circular heteroduplex DNA. The heteroduplex is then treated with sodium bisulfite that converts specifically cytosine residues to uracil residues in single-stranded regions. After filling in the gap by repair synthesis, transformation is carried out to isolate mutant plasmids. Since two kinds of circular heteroduplexes are formed by annealing in which the sequences in the gaps are complementary to each other, mutagenesis of both strands can be accomplished in one experiment. This method was applied to construction of mutants with base substitutions in the replication origin region (oriC) of the Escherichia coli K-12 chromosome which had previously been cloned in colicin E1 plasmid vectors, and various mutants in defined regions of oriC were successfully isolated at high efficiencies. Analysis of these mutants provided evidence that oriC contains special regions, designated spacers, which separate neighboring important sequences specifying interactions with initiation factors for DNA replication at precise distances.  相似文献   

10.
Non-random segregation of DNA strands in Escherichia coli B-r   总被引:11,自引:0,他引:11  
The segregation of DNA strands during growth of Escherichia coliBr has been studied under conditions in which the chromosomal configuration and the ancestry of the cells during growth and division were known. Cells containing either one or two replicating chromosomes were pulse-labeled with [3H]thymidine, and the location of the radioactivity within chains of cells formed by growth in methylcellulose was determined by autoradiography. The locations of the radioactive cells within chains obtained after the second, third and fourth divisions were consistent with the co-segregation of only one of the replicating strands of each chromosome and a fixed region of the cell into daughter cells. The attachment of this strand to the region appeared to become permanent at the time the strand was used for the first time as a template. It is concluded that the segregation of DNA molecules into daughter cells is non-random in E. coli B/r.  相似文献   

11.
The sequence in which N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 5-bromodeoxyuridine (BrdU) are added to cell cultures affects the number of sister chromatid exchanges (SCE) induced by MNNG. When V79 Chinese hamster cell monolayer cultures were treated with MNNG for 2 h prior to addition of BrdUrd, approximately a 4–5-fold increase in SCE was observed at the second division metaphases compared to controls exposed to BrdU alone. This effect was independent of whether one or three DNA strands had been substituted as a result of incubating the cells through one or two DNA synthesis periods in the presence of BrdU. This increase in SCE also occurred after MNNG exposure and BrdU incubation was extended for three division cycles. In contrast, when BrdU incorporation preceded MNNG treatment, the average number of SCE/metaphase was reduced 70–80% at the second division cycle and 60% relative to the total number found in three division cycles. SCE induction by MNNG does not involve a caffeine sensitive step since caffeine had no effect on the SCE frequency regardless of the treatment protocol. The conditions in which BrdU preceded MNNG exposure may be responsible for either reducing the number of DNA sites available for interaction with MNNG or preventing the expression of SCE.  相似文献   

12.
13.
14.
Singal R  Grimes SR 《BioTechniques》2001,30(1):116-120
Cytosine methylation at CpG dinucleotides is an important control mechanism in development, differentiation, and neoplasia. Bisulfite genomic sequencing and its modifications have been developed to examine methylation at these CpG dinucleotides. To use these methods, one has to (i) manually convert the sequence to that produced by bisulfite conversion and PCR amplification, taking into account that cytosine residues at CpG dinucleotides may or may not be converted depending on their methylation status, (ii) identify relevant restriction sites that may be used for methylation analysis, and (iii) conduct similar steps with the other DNA strand since the two strands of DNA are no longer complementary after bisulfite conversion. To automate these steps, we have developed a macro that can be used with Microsoft Word. This macro (i) converts genomic sequence to modified sequence that would result after bisulfite treatment facilitating primer design for bisulfite genomic sequencing and methylation-sensitive PCR assay and (ii) identifies restriction sites that are preserved in bisulfite-converted and PCR-amplified product only if cytosine residues at relevant CpG dinucleotides are methylated (and thereby not converted to uracil) in the genomic DNA.  相似文献   

15.

Background

We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing.

Methodology/Principal Findings

We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CMS modification, especially when two CMS bases were either adjacent to one another or separated by 1–2 nucleotides.

Conclusions

We have confirmed that the widely used bisulfite sequencing technique does not distinguish between 5-mC and 5-hmC. Moreover, we show that CMS, the product of bisulfite conversion of 5-hmC, tends to stall DNA polymerases during PCR, suggesting that densely hydroxymethylated regions of DNA may be underrepresented in quantitative methylation analyses.  相似文献   

16.
The SalGI restriction endonuclease. Mechanism of DNA cleavage.   总被引:6,自引:2,他引:4       下载免费PDF全文
The cleavage of supercoiled DNA of plasmid pMB9 by restriction endonuclease SalGI has been studied. Under the optimal conditions for this reaction, the only product is the linear form of the DNA, in which both strands of the duplex have been cleaved at the SalGI recognition site. DNA molecules cleaved in one strand at this site were found to be poor substrates for the SalGI enzyme. Thus, both strands of the DNA appear to be cleaved in a concerted reaction. However, under other conditions, the enzyme cleaves either one or both strands of the DNA; the supercoiled substrate is then converted to either open-circle or linear forms, the two being produced simultaneously rather than consecutively. We propose a mechanism for the SalGI restriction endonuclease which accounts for the reactions of this enzyme under both optimal and other conditions. These reactions were unaffected by the tertiary structure of the DNA.  相似文献   

17.
Previous studies have indicated that the ultraviolet endonuclease of bacteriophage T4 acts specifically at pyrimidine dimer sites in ultraviolet-irradiated DNA. At such sites the enzyme could conceivably catalyze endonucleolytic incision of the DNA either on the dimer-containing strand or on the strand directly opposite to the dimer. In the present work, a direct test of these alternatives was made. Substrate molecules containing one irradiated and one unirradiated strand were prepared from differentially isotopically labeled purified complementary strands of bacteriophage lambdaDNA. Following incubation with the enzyme, the sedimentation profiles of the DNA strands in alkaline sucrose density gradients were compared. The results show that the enzyme selectively nicks the irradiated strand.  相似文献   

18.
The vast majority of plus strands synthesized in quail cells acutely infected with avian sarcoma virus were subgenomic in size, generally less than 3 kilobases (kb). A series of discrete species could be identified after agarose gel electrophoresis by annealing with various complementary DNAs, indicating specificity in the initiation and termination of plus strands. The first plus strand to appear (within 2 h postinfection) was similar in length to the long redundancy at the ends of linear DNA (0.35 kb), and it annealed with complementary DNAs specific for the 3' and 5' termini of viral RNA (Varmus et al., J. Mol. Biol. 120:50-82, 1978). Several subgenomic plus-strand fragments (0.94, 1.38, 2.3, and 3.4 kb) annealed with these reagents. At least the 0.94- and 1.38-kb strands were located at the same end of linear DNA as the 0.35-kb strand, indicating that multiple specific sites for initiation were employed to generate strands which overlapped on the structural map. We were unable to detect RNA liked to plus strands isolated as early as 2.5 h postinfection; thus, the primers must be short (fewer than 50 to 100 nucleotides), rapidly removed, or not composed of RNA. To determine whether multiple priming events are a general property of retroviral DNA synthesis in vivo, we also examined plus strands of mouse mammary tumor virus DNA in chronically infected rat cells after induction of RNA and subsequent DNA synthesis with dexamethasone. In this case, multiple, discrete subgenomic DNA plus strands were not found when the same methods applied to avian sarcoma virus DNA were used; instead, the plus strands present in the linear DNA of mouse mammary tumor virus fell mainly into two classes: (i) strands of ca. 1.3 kb which appeared early in synthesis and were similar in size and genetic content to the terminally repeated sequence in linear DNA; and (ii) plus strands of the same length as linear DNA. A heterogeneous population of other strands diminished with time, was not found in completed molecules, and was probably composed of strands undergoing elongation. These two retroviruses thus appear to differ with respect to both the number of priming sites used for the synthesis of plus strands and the abundance of full-length plus strands. On the other hand the major subgenomic plus strand of mouse mammary tumor virus DNA (1.3 kb) is probably the functional homolog of a major subgenomic plus strand of avian sarcoma virus DNA (0.35 kb). The significance of this plus strand species is discussed in the context of current models which hold that it is used as a template for the completion of the minus strand, thereby generating the long terminal redundancy.  相似文献   

19.
MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities.  相似文献   

20.
HeLa mitochondrial 4 s RNA has been covalently coupled to the electron opaque label, ferritin, which is visible in the electron microscope. Mixtures of HeLa mitochondrial 12 s ribosomal RNA, 16 s rRNA and/or the 4 s RNA-ferritin conjugate have been hybridized to separated heavy (H) and light (L) strands of HeLa mitochondrial DNA, or to a mixture of H and L strands. The relative positions of the duplex regions corresponding to the 12 s and 16 s rRNA—DNA hybrids and of the ferritin-labeled 4 s RNA's have been mapped in the electron microscope after spreading the DNA strands by the formamide modification of the basic protein film technique. The 12 s and 16 s duplex regions have lengths of 0·-26 ± 0.04 μm and 0.46 ± 0.07 μm, respectively. They are separated by a single-strand region of length 0.047 ± 0.017 μm, corresponding to 160 ± 60 nucleotides. There are nine reproducible binding sites for 4 s RNA on the H strand. One such site lies within the spacer region between the 12 s and 16 s coding sequences, one site is immediately adjacent to the other side of the 12 s sequence and one is adjacent to the other side of the 16 s sequence. The other 4 s sites are rather evenly spaced along the DNA strand of total length 15,600 nucleotides, except that two of them are clustered with a spacing of 120 ± 30 nucleotides between them. There are three 4 s RNA coding sequences on the L strand, separated from one another by 2280 and 3900 nucleotides, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号