首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘廷析 《生命科学》2009,(5):675-678
造血干细胞(hematopoietic stem cell,HSC)是成体干细胞研究领域的范式。对造血干细胞自我更新和不对称分裂分子遗传学机制的诠释,将不仅帮助理解成体干细胞“干性”维持的发育遗传学机制,也将对白血病干细胞和其他类型肿瘤干细胞的发育起源及开发针对肿瘤干细胞的靶向治疗模式产生深远的影响。  相似文献   

2.
Understanding the mechanisms of stem cell proliferation, self-renewal and differentiation is fundamental for stem cell biology. Stem cells proliferate by either symmetric division or asymmetric division. Through asymmetric division, stem cells self-renew and differentiate to mature cells. Stem cells could also divide symmetrically to give rise to differentiated cells. Besides intrinsic cues, proliferation and self-renewal of most stem cell types also rely on extrinsic signals from niche or surrounding cells. Failure in any of these factors may result in disturbed stem cell proliferation, self-renewal or differentiation and/or generate cancer stem cells that drive cancer development.  相似文献   

3.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

4.
Asymmetric stem cell division has emerged as a major regulatory mechanism for physiologic control of stem cell numbers. Reinvigoration of the cancer stem cell theory suggests that tumorigenesis may be regulated by maintaining the balance between asymmetric and symmetric cell division. Therefore, mutations affecting this balance could result in aberrant expansion of stem cells. Although a number of molecules have been implicated in regulation of asymmetric stem cell division, here, we highlight known tumor suppressors with established roles in this process. While a subset of these tumor suppressors were originally defined in developmental contexts, recent investigations reveal they are also lost or mutated in human cancers. Mutations in tumor suppressors involved in asymmetric stem cell division provide mechanisms by which cancer stem cells can hyperproliferate and offer an intriguing new focus for understanding cancer biology. Our discussion of this emerging research area derives insight from a frontier area of basic science and links these discoveries to human tumorigenesis. This highlights an important new focus for understanding the mechanism underlying expansion of cancer stem cells in driving tumorigenesis.  相似文献   

5.
Malignant gliomas contain a population of self-renewing tumorigenic stem-like cells; however, it remains unclear how these glioma stem cells (GSCs) self-renew or generate cellular diversity at the single-cell level. Asymmetric cell division is a proposed mechanism to maintain cancer stem cells, yet the modes of cell division that GSCs utilize remain undetermined. Here, we used single-cell analyses to evaluate the cell division behavior of GSCs. Lineage-tracing analysis revealed that the majority of GSCs were generated through expansive symmetric cell division and not through asymmetric cell division. The majority of differentiated progeny was generated through symmetric pro-commitment divisions under expansion conditions and in the absence of growth factors, occurred mainly through asymmetric cell divisions. Mitotic pair analysis detected asymmetric CD133 segregation and not any other GSC marker in a fraction of mitoses, some of which were associated with Numb asymmetry. Under growth factor withdrawal conditions, the proportion of asymmetric CD133 divisions increased, congruent with the increase in asymmetric cell divisions observed in the lineage-tracing studies. Using single-cell-based observation, we provide definitive evidence that GSCs are capable of different modes of cell division and that the generation of cellular diversity occurs mainly through symmetric cell division, not through asymmetric cell division.  相似文献   

6.
In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.  相似文献   

7.
精原干细胞(spermatogonial stem cells,SSCs)具有自我更新和分化的功能,这两种功能的平衡协调不仅能维持其自身数量的稳定,还能满足雄性动物精子生成的需要。近几年,由于细胞培养技术、基因工程技术、生殖细胞移植技术的建立和完善,使SSCs自我更新调控机制的研究取得了许多突破,主要体现在蛋白调控因子和微小RNA分子以及DNA甲基化新作用的发现等方面。该文将着重围绕调控SSCs自我更新的外源性细胞因子和内源性转录因子等蛋白因子进行综述,以期为哺乳动物SSCs的深入研究提供借鉴。  相似文献   

8.
多细胞生物的发育是从一个受精卵分化成多种类型细胞的过程。细胞多样性形成的基础是不等分裂,不等分裂是干细胞自我更新和自我维持的关键。干细胞不等分裂有细胞内和细胞外两种调节机制。果蝇神经干细胞增殖和分化、植物胚胎发育、表皮气孔形成及根内皮层的分化,是研究不等细胞分裂调节机制最多的发育背景。本综述介绍了果蝇神经干细胞和植物胚胎发育早期、表皮气孔发生及根皮层内皮层中细胞不等分裂内在调节机制的研究进展。  相似文献   

9.
干细胞发育中存在对称/不对称两种方式的交替分裂,精确调控维持正常发育。相关调控因素有外源性机制和内源性机制,发现于基本模式生物果蝇,主要包括干细胞周围微环境、细胞极性、纺锤体轴向和命运决定子不对称分布。调控机制的失常将导致干细胞分裂模式紊乱,可能造成肿瘤发生。简要综述了相关研究进展。  相似文献   

10.
The balance between the symmetric and asymmetric division of stem cells governs tissue homeostasis, and the deregulation of this balance initiates tumor formation. Although many functions of Numb have been demonstrated in normal stem cells, the role of Numb in cancer stem cells is relatively unclear. We recently demonstrated that in colorectal cancer stem cells, Numb was suppressed by miR-146a-5p, which resulted in the activation of the Wnt signaling pathway and symmetric template DNA division. Here, we demonstrate that the PKH26-labeled subcellular foci are enriched for endosomal markers such as EEA1 and RAB11. In colorectal cancer stem cells, the PKH-26-labeled vesicles are segregated equally at the first mitotic division; in contrast, they are unequally segregated in parental cells or in cancer stem cells undergoing serum-induced differentiation. The PKHBright progeny of colorectal cancer stem cells harbors a stem cell phenotype, whereas the PKHDim progeny behaves as the differentiating cells. The miR-146a-5p-regulated Numb controls the distribution of PKH26 vesicles. Our results suggest a critical role of Numb in controlling the segregation of subcellular vesicles during division of colorectal cancer stem cells.  相似文献   

11.
Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry (sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function.Key words: stem cell, asymmetric division, niche, centrosome, spindle orientation  相似文献   

12.
Stem cells are a promising cell source for regenerative medicine due to their characteristics of self‐renewal and differentiation. The intricate balance between these two cell fates is maintained by precisely controlled symmetric and asymmetric cell divisions. Asymmetric division has a fundamental importance in maintaining tissue homeostasis and in the development of multi‐cellular organisms. For example, during development, asymmetric cell divisions are responsible for the formation of the body axis. Mechanistically, mitotic spindle dynamics determine the assembly and separation of chromosomes and regulate the orientation of cell division. Interestingly, symmetric and asymmetric cell division is not mutually exclusive and a range of factors are involved in such cell‐fate decisions, the measurement of which can provide efficient and reliable information on the regenerative potential of a cell. The balance between self‐renewal and differentiation in stem cells is controlled by various biophysical and biochemical cues. Although the role of biochemical factors in asymmetric stem cell division has been widely studied, the effect of biophysical cues in stem‐cell self‐renewal is not comprehensively understood. Herein, we review the biological relevance of stem‐cell asymmetric division to regenerative medicine and discuss the influences of various intrinsic and extrinsic biophysical cues in stem‐cell self‐renewal. This review particularly aims to inform the clinical translation of efforts to control the self‐renewal ability of stem cells through the tuning of various biophysical cues.  相似文献   

13.
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.  相似文献   

14.
《朊病毒》2013,7(2):84-88
Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry(sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types, and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function.  相似文献   

15.
During asymmetric cell division in Drosophila sensory organ precursor cells, the Numb protein localizes asymmetrically and segregates into one daughter cell, where it influences cell fate by repressing signal transduction via the Notch receptor. We show here that Numb acts by polarizing the distribution of alpha-Adaptin, a protein involved in receptor-mediated endocytosis. alpha-Adaptin binds to Numb and localizes asymmetrically in a Numb-dependent fashion. Mutant forms of alpha-Adaptin that no longer bind to Numb fail to localize asymmetrically and cause numb-like defects in asymmetric cell division. Our results suggest a model in which Numb influences cell fate by downregulating Notch through polarized receptor-mediated endocytosis, since Numb also binds to the intracellular domain of Notch.  相似文献   

16.
Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.  相似文献   

17.
Over the past few years, supporting evidence for the cancer stem cell hypothesis has been provided for an increasing number of tumor entities. According to this hypothesis, only a small population of undifferentiated cells with stem cell characteristics has the ability to form tumors through asymmetric division and subsequent differentiation of the progeny into the heterogeneous cell types that comprise a tumor. Recently, we were able to show that cancer stem cells are not only responsible for tumorigenesis, but that they contain a subpopulation characterized by CXCR4 expression which is exclusively capable of disseminating and subsequently providing the substrate for tumor metastasis. Of note, these recent advances in our understanding of cancer stem cell biology raise more questions than they answer. Some of these arising questions regarding the targeted elimination of these cancer stem cells will be addressed in this perspective.  相似文献   

18.
Recent research in cancer biology has suggested the hypothesis that tumors are initiated and driven by a small group of cancer stem cells (CSCs). Furthermore, cancer stem cell niches have been found to be essential in determining fates of CSCs, and several signaling pathways have been proven to play a crucial role in cellular behavior, which could be two important factors in cancer development. To better understand the progression, heterogeneity and treatment response of breast cancer, especially in the context of CSCs, we propose a mathematical model based on the cell compartment method. In this model, three compartments of cellular subpopulations are constructed: CSCs, progenitor cells (PCs), and terminal differentiated cells (TCs). Moreover, (1) the cancer stem cell niche is, considered by modeling its effect on division patterns (symmetric or asymmetric) of CSCs, and (2) the EGFR signaling pathway is integrated by modeling its role in cell proliferation, apoptosis. Our simulation results indicate that (1) a higher probability for symmetric division of CSC may result in a faster expansion of tumor population, and for a larger number of niches, the tumor grows at a slower rate, but the final tumor volume is larger; (2) higher EGFR expression correlates to tumors with larger volumes while a saturation function is observed, and (3) treatments that inhibit tyrosine kinase activity of EGFR may not only repress the tumor volume, but also decrease the CSCs percentages by shifting CSCs from symmetric divisions to asymmetric divisions. These findings suggest that therapies should be designed to effectively control or eliminate the symmetric division of CSCs and to reduce or destroy the CSC niches.  相似文献   

19.
生殖干细胞是具有自我更新能力的一群生殖细胞,充当配子生成的源泉。果蝇生殖干细胞的特征在于通过不对称分裂产生两个子代细胞,一个通过自我更新维持干细胞特性,另一个则进行分化。生殖干细胞的命运受其周围的微环境——"干细胞niche"控制,而"niche"的功能又通过干细胞的外源和内源信号间的相互作用来完成。小分子RNA通过复杂的RNAi途径调控基因的表达。大量证据表明生殖干细胞的维持和分化需要小分子RNA参与,小分子RNA生成的紊乱会导致干细胞的"丢失"或"未分化"。该文综述了小分子RNA对果蝇生殖干细胞命运调控的研究进展,并讨论新发现的小分子RNA在生殖干细胞命运决定中的相关功能。  相似文献   

20.
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号