首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain some insight into the role of c-myb and c-fes in myeloid differentiation, the authors have analyzed the ability of HL60 cells to differentiate in response to several different inducers after inhibition of c-myb and c-fes function. This function has been inhibited almost completely by using deoxynucleotides complementary to two 18-nucleotide sequences of c-myb and c-fes encoding mRNA. After 5 days in culture, in several separate experiments with different oligomer preparations, more than 90% growth inhibition was observed in c-myb antisense-treated HL60 cells. At this time, independent of the differentiation inducer used, c-myb antisense-treated HL60 cells differentiate only along the monocytic pathway, whereas in sense oligomer-treated cultures, retinoic acid and dimethyl sulfoxide induced granulocytic differentiation. No perturbation of the HL60 cell growth was observed after 5 days of treatment with antisense c-fes oligomer. However, induction to granulocytic differentiation by retinoic acid and dimethyl sulfoxide resulted in progressive cell death, whereas monocytic differentiation by other differentiation inducers was only marginally affected. These results suggest that granulocytic, unlike monocytic, differentiation requires c-myb-conditioned proliferation and the activity of the protein encoded by c-fes.  相似文献   

2.
3.
4.
Changes in expression of the proto-oncogene Bcl-2 are well known in the developing brain, with a high expression level in young post-mitotic neurons that are beginning the outgrowth of processes. The physiological significance of the Bcl-2 up-regulation in these neurons is not fully understood. We used a differentiation model for human CNS neurons to study the expression and function of Bcl-2. NT2/D1 human neuronal precursor cells differentiated into a neuronal phenotype in the presence of 10 microM retinoic acid for 3-5 weeks. This concentration of retinoic acid was not toxic to undifferentiated NT2/D1 cells but was sufficient to up-regulate the BCL-2 protein in 6 days. The BCL-2 levels increased further after 3 weeks, i.e. when the cells started to show neuronal morphology. Inhibition of the accumulation of endogenous BCL-2 with vectors expressing the antisense mRNA of Bcl-2 caused extensive apoptosis after 3 weeks of the retinoic acid treatment. The loss of neuron-like cells from differentiating cultures indicated that the dead cells were those committed to neuronal differentiation. Death was related to the presence of retinoic acid since withdrawal of retinoic acid after 16 days of treatment dramatically increased cell surviving. The ability of BCL-2 to prevent retinoic acid-induced cell death was also confirmed in undifferentiated NT2/D1 cells that were transfected with a vector containing Bcl-2 cDNA in sense orientation and exposed to toxic doses (40-80 microM) of retinoic acid. Furthermore, down-regulation of BCL-2 levels by an antisense oligonucleotide in neuronally differentiated NT2/D1 cells increased their susceptibility to retinoic acid-induced apoptosis. These results indicate that one function of the up-regulation of endogenous BCL-2 during neuronal differentiation is to regulate the sensitivity of young post-mitotic neurons to retinoic acid-mediated apoptosis.  相似文献   

5.
The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Glutamine is an essential amino acid in cancer cells and is required for the growth of many other cell types. Glutaminase activity is positively correlated with malignancy in tumours and with growth rate in normal cells. In the present work, Ehrlich ascites tumour cells, and their derivative, 0.28AS-2 cells, expressing antisense glutaminase mRNA, were assayed for apoptosis induced by methotrexate and hydrogen peroxide. It is shown that Ehrlich ascites tumour cells, expressing antisense mRNA for glutaminase, contain lower levels of glutathione than normal ascites cells. In addition, 0.28AS-2 cells contain a higher number of apoptotic cells and are more sensitive to both methotrexate and hydrogen peroxide toxicity than normal cells. Taken together, these results provide insights into the role of glutaminase in apoptosis by demonstrating that the expression of antisense mRNA for glutaminase alters apoptosis and glutathione antioxidant capacity.  相似文献   

7.
Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model. We have recently shown that there was a direct interaction between cyclin A1 and a major all-trans retinoic acid receptor, RAR alpha, following all-trans retinoic acid treatment of leukemic cells. In the present study, we investigated whether cyclin A1 might be involved in all-trans retinoic acid-induced apoptosis in U-937 leukemic cells. We found that all-trans retinoic acid-induced apoptosis was associated with concomitant increase in cyclin A1 expression. However, there was no induction of cyclin A1 mRNA expression following the all-trans retinoic acid-induced apoptosis. Treatment of cells with a caspase inhibitor was not able to prevent all-trans retinoic acid-induced up-regulation of cyclin A1 expression. Interestingly, induced cyclin A1 expression in U-937 cells led to a significant increase in the proportion of apoptotic cells. Further, U-937 cells overexpressing cyclin A1 appeared to be more sensitive to all-trans retinoic acid-induced apoptosis indicating the ability of cyclin A1 to mediate all-trans retinoic acid-induced apoptosis. Induced cyclin E expression was not able to initiate cell death in U-937 cells. Our results indicate that cyclin A1 might have a role in apoptosis by mediating all-trans retinoic acid-induced apoptosis.  相似文献   

8.
9.
The lack of efficient and specific delivery to target cells still limits the potential application of antisense oligodeoxynucleotides as therapeutic agents in cancer disease. We have covalently linked a polylysine chain (10,000–20,000 mW) to compounds as folic acid, retinoic acid, transferrin, insulin and estradiol, to deliver c-myb antisense oligonucleotide into tumor cells. Using these complexes as carriers for the oligodeoxynucleotides can be achieved an increase in their uptake into target cells through a natural endocytosis pathway.  相似文献   

10.
In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis.  相似文献   

11.
12.
The effects of an antisense oligodeoxynucleotide to codons 2-7 of the oncogene MYCN on the human neuroblastoma cell line LAN-5 were studied. Treated cells showed a decreased MYCN protein expression and synthesis by immunoperoxidase staining and immunoprecipitation. At the same time, the replication rate was inhibited, and the phenotype was modified toward a more differentiated type. Our data suggest the involvement of oncogene MYCN in both proliferative and differentiative processes.  相似文献   

13.
Neuroblastoma cells are neural crest derivatives that can differentiate into neuron-like cells in response to exogenous agents, and are known to be particularly sensitive to retinoic acid. The spectrum of neuroblastoma responses, ranging from proliferation, migration, differentiation, or apoptosis, is difficult to predict due to the heterogeneity of these tumors and to the broad effective range of retinoic acid. Our study focused on the effects of nanomolar concentrations of retinoic acid on neuroblastoma differentiation in two cell lines cells: SK-N-SH (HTB-11) and IMR-32. Each cell line was treated with retinoic acid from 1 to 100 nM for up to 6 d. Morphological changes were quantified; immunocytochemistry was used to observe changes in neuronal protein expression and localization, while live-cell calcium imaging utilizing pharmacological agents was conducted to identify neuron-like activity. Retinoic acid-treated HTB-11 but not IMR-32 cells developed specific neuronal phenotypes: acquisition of long neurite-like processes, expression of neurofilament-200, increased responsiveness to acetylcholine, and decreased responsiveness to nicotine and epinephrine. In addition, nanomolar levels of retinoic acid elicited increased nuclear trafficking of the CRABP2, which is traditionally associated with gene expression of cellular pathways related to neuronal differentiation. Collectively, these results show that nanomolar concentrations of retinoic acid are capable of inducing both structural and functional neuron-like features in HTB-11 cells using CRABP2, suggesting differentiation in neuroblastoma cells into neuronal phenotypes. These have important implications for both chemotherapeutic design and for the use of neuroblastomas as in vitro models for neuron differentiation.  相似文献   

14.
c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.  相似文献   

15.
Extracellular regulators of human megakaryocyte development are becoming better defined. How these regulators function at the subcellular and, in particular, the molecular levels remains almost completely unknown. The recent development of molecular micromethodologies such as in situ hybridization, the polymerase chain reaction, and the use of antisense oligodeoxynucleotides now make such studies possible in normal cells. We therefore examined the effect of several recombinant human hematopoietic growth factors and the maturation agonist phorbol myristate acetate on the expression of selected growth-regulated and maturation/function-related genes. We also examined the role of the c-myb proto-oncogene in regulating megakaryocyte proliferative activity and ploidy development. Our results demonstrate that growth factors have complex time and concentration effects on gene expression in morphologically recognizable human megakaryocytes. They also suggest that a more complete understanding of normal megakaryocyte development at the molecular level will soon be possible.  相似文献   

16.
The product of the blr1 gene is a CXC chemokine receptor (CXCR5) that regulates B lymphocyte migration and has been implicated in myelomonocytic differentiation. The U937 human leukemia cell line was used to study the role of blr1 in retinoic acid-regulated monocytic leukemia cell growth and differentiation. blr1 mRNA expression was induced within 12 hr by retinoic acid in U937 cells. To determine whether the early induction of blr1 might regulate inducible monocytic cell differentiation, U937 cells were stably transfected with blr1 (U937/blr1 cells). Ectopic expression of blr1 caused no significant cell cycle or differentiation changes, but caused the U937/blr1 cells to differentiate faster when treated with either retinoic acid or 1alpha,25-dihydroxyvitamin D(3). Treated with retinoic acid, U937/blr1 cells showed a greater increase in the percentage of CD11b expressing cells than vector control cells. Retinoic acid also induced a higher percentage of functionally differentiated blr1 transfectants as assessed by nitroblue tetrazolium reduction. U937/blr1 cells underwent moderate growth inhibition on treatment with retinoic acid. Similar results occurred with 1alpha,25-dihydroxyvitamin D(3). Because blr1 was induced early during cell differentiation and because its overexpression accelerated monocytic differentiation, it may be important for signals controlling cell differentiation.  相似文献   

17.
The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, is known to interact with amphoterin. This interaction has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation. However, there is as yet no direct evidence of the relevance of this pathway to neurodifferentiation under physiological conditions. In this study we have investigated a possible role of RAGE and amphoterin in the retinoic acid-induced differentiation of neuroblastoma cells. The functional inactivation of RAGE by dominant negative and antisense strategies showed that RAGE is not required for process outgrowth or differentiation, although overexpression of RAGE accelerates the elongation of neuritic processes. Using the antisense strategy, amphoterin was shown to be essential for process outgrowth and differentiation, suggesting that amphoterin may interact with other molecules to exert its effect in this context. Interestingly, the survival of the neuroblastoma cells treated with retinoic acid was partly dependent on the expression of RAGE, and inhibition of RAGE function partially blocked the increase in anti-apoptotic protein Bcl-2 following retinoic acid treatment. Based on these results we propose that a combination therapy using RAGE blockers and retinoic acid may prove as a useful approach for chemotherapy for the treatment of neuroblastoma.  相似文献   

18.
The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.  相似文献   

19.
20.
Cell numbers are regulated by a balance among proliferation, growth arrest, and programmed cell death. A profound example of cell homeostasis, controlled throughout life, is the complex process of blood cell development, yet little is understood about the intracellular mechanisms that regulate blood cell growth arrest and programmed cell death. In this work, using transforming growth factor beta 1 (TGF beta 1)-treated M1 myeloid leukemia cells and genetically engineered M1 cell variants, the regulation of growth arrest and apoptosis was dissected. Blocking of early expression of MyD118, a novel differentiation primary response gene also shown to be a primary response gene induced by TGF beta 1, delayed TGF beta 1-induced apoptosis, demonstrating that MyD118 is a positive modulator of TGF beta 1-mediated cell death. Elevated expression of bcl-2 blocked the TGF beta 1-induced apoptotic pathway but not growth arrest induced by TGF beta 1. Deregulated expression of either c-myc or c-myb inhibited growth arrest and accelerated apoptosis, demonstrating for the first time that c-myb plays a role in regulating apoptosis. In all cases, the apoptotic response was correlated with the level of MyD118 expression. Taken together, these findings demonstrate that the primary response gene MyD118 and the c-myc, c-myb, and bcl-2 proto-oncogenes interact to modulate growth arrest and apoptosis of myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号