首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic trioxide (As2O3) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-a (PML-RARa) fusion protein. However, evidence has accumulated that As2O3 induces apoptosis regardless of PML-RARa status. Here we show that, at clinically relevant concentrations, As2O3 causes S and G2M phase arrest of both PML-RARa-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G2M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G2M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.

Key Words:

PML nuclear bodies (NB), Phosphorylated histone H3  相似文献   

2.
Recent clinical studies have shown that inorganic arsenic trioxide (As(2)O(3)) at low concentrations induces complete remission with minimal toxicity in patients with refractory acute promyelocytic leukemia (APL). Preclinical studies suggest that As(2)O(3) induces apoptosis and possibly differentiation in APL cells. Like APL cells, neuroblastoma (NB) cells are thought to be arrested at an early stage of differentiation, and cells of highly malignant tumors fail to undergo spontaneous maturation. Both APL and NB cells can respond with differentiation to retinoic acid (RA) treatment in vitro and probably also in vivo. For that reason we investigated the effect of As(2)O(3) alone and in combination with RA on NB cell lines. In vitro, the number of viable NB cells was reduced at As(2)O(3) concentrations around 1 microM after 72 h exposure. The IC50 in six different cell lines treated for 3 days was in the 1.5 to 5 microM concentration interval, the most sensitive being SK-N-BE(2) cells derived from a chemotherapy resistant tumor. The combined treatment with RA (1 and 3 microM) showed no consistent additional effect with regard to induced cell death. The effect of As(2)O(3) on NB cell number involved As(2)O(3)-induced apoptotic pathways (decreased expression of Bcl-2 and stimulation of caspase-3 activity) with no clear evidence of induced differentiation. The in vivo effect of As(2)O(3) on NB growth was also investigated in nude mice bearing tumors of xenografted NB cells. Although tumor growth was reduced by As(2)O(3) treatment, complete remission was not achieved at the concentrations tested. We suggest that As(2)O(3), in combination with existing treatment modalities, might be a treatment approach for high risk NB patients.  相似文献   

3.
This study concerns the synthesis of new histone deacetylase inhibitors (HDACi) characterized by a 1,4-benzodiazepine ring used as the cap, joined through an amide function or a triple bond as connection units, to a linear alkyl chain bearing the hydroxamate function as Zn2+-chelating group. Biological tests performed in human acute promyelocytic leukemia NB4 cells showed that new hybrids can induce histone H3/H4 acetylation, growth arrest, and also apoptosis. Notably, chiral compounds exhibit stereoselective activity.  相似文献   

4.
Arsenic trioxide (As(2)O(3)) was recently demonstrated to be an effective inducer of apoptosis in patients with relapsed acute promyelocytic leukemia (APL) as well as in patients with APL in whom all-trans-retinoic acid and conventional chemotherapy failed. Chronic myelogenous leukemia cells are highly resistant to chemotherapeutic drugs. To determine if As(2)O(3) might be useful for the treatment of chronic myelogenous leukemia, we examined the ability of As(2)O(3) to induce apoptosis in K562 cells. In vitro cytotoxicity of As(2)O(3) was evaluated in K562 cells by a MTT assay; the IC(50) value for As(2)O(3) was determined to be 10 microM. When analyzed by agarose gel electrophoresis, the DNA fragments became evident after incubation of the cells with 20 microM As(2)O(3) for 24 h. We also found morphological changes and chromatin condensation of the cells undergoing apoptosis. Activation of caspase-3 was observed 6 h after treatment with 20 microM As(2)O(3) by a Western blot analysis. Next, we examined the MAP kinase-signaling pathway of As(2)O(3)-induced apoptosis in K562 cells. As(2)O(3) at 10 microM strongly induced the activation of p38 and JNK 1/2, while ERK 1/2 was inhibited. In addition, pretreatment of SB203580, a specific inhibitor of p38, inhibited As(2)O(3) induced apoptotic cell death. These results suggest that As(2)O(3) is able to induce the apoptotic activity in K562 cells, and its apoptotic mechanism may be associated with the activation of p38.  相似文献   

5.
Arsenic trioxide (As2O3) inhibits cell growth and induces apoptosis in certain types of cancer cells including acute promyelocytic leukemia, prostate and ovarian carcinomas, but its effect on response of tumor cells to ionizing radiation has never been explored before. Here we demonstrate that As2O3 can sensitize human cervical cancer cells to ionizing radiation both in vitro and in vivo. As2O3 in combination with ionizing radiation have a synergistic effect in decreasing clonogenic survival and in the regression of established human cervical tumor xenografts. Pretreatment of the cells with As2O3 also synergistically enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of As2O3 and radiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase-9 and caspase-3. The combined treatment also resulted in an increased G2/M cell cycle distribution at the concentration of As2O3 which did not alter cell cycle when applied alone. These results indicate that As2O3 can synergistically enhance radiosensitivity of human cervix carcinoma cells in vitro and in vivo, suggesting a potential clinical applicability of combination treatment of As2O3 and ionizing radiation in cancer therapies.  相似文献   

6.
Treatment with the anti-leukemic drug arsenic trioxide (As(2)O(3), 1-4 microM) sensitizes U937 promonocytes and other human myeloid leukemia cell lines (HL60, NB4) to apoptosis induction by TNFalpha. As(2)O(3) plus TNFalpha increases TNF receptor type 1 (TNF-R1) expression, decreases c-FLIP(L) expression, and causes caspase-8 and Bid activation, and apoptosis is reduced by anti-TNF-R1 neutralizing antibody and caspase-8 inhibitor. The treatment also causes Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP down-regulation, and caspase-9 and caspase-3 activation. Bcl-2 over-expression inhibits cytochrome c release and apoptosis, and also prevents c-FLIP(L) down-regulation and caspase-8 activation, but not TNF-R1 over-expression. As(2)O(3) does not affect Akt phosphorylation/activation or intracellular GSH content, nor prevents the TNFalpha-provoked stimulation of p65-NF-kappaB translocation to the nucleus and the increase in NF-kappaB binding activity. Treatments with TNFalpha alone or with As(2)O(3) plus TNFalpha cause TNF-R1-mediated p38-MAPK phosphorylation/activation. P38-MAPK-specific inhibitors attenuate the As(2)O(3) plus TNFalpha-provoked activation of caspase-8/Bid, Bax translocation, cytochrome c release, and apoptosis induction. In conclusion, the sensitization by As(2)O(3) to TNFalpha-induced apoptosis in promonocytic leukemia cells is an Akt/NF-kappaB-independent, p38-MAPK-regulated process, which involves the interplay of both the receptor-mediated and mitochondrial executioner pathways.  相似文献   

7.
Siu KP  Chan JY  Fung KP 《Life sciences》2002,71(3):275-285
Arsenic trioxide (As(2)O(3)), a major ingredient of Traditional Chinese Medicine (TCM), is found to be an effective anticancer drug in acute promyelocytic leukemia (APL). The present study explored the use of As(2)O(3) on human hepatocellular carcinoma by in vitro study. The study showed that the clinically achievable concentration of As(2)O(3), i.e. 2 microM, inhibited the cell proliferation of human hepatocellular carcinoma cell line, HepG2, in a time-dependent manner. The mechanistic study showed that 2 microM of As(2)O(3) acted through induction of apoptosis in which caspase-3 was activated. The results also suggested that mitochondria did not take part in As(2)O(3)-induced apoptosis.  相似文献   

8.
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of the essential oils extracted from several lemon-scented herbal plants. Besides its antifungal activity, the anticancer effect of citral was studied in recent years. In this study, we investigated the effect of citral on the acute promyelocytic leukemia cell line NB4. Citral treatment had an antiproliferative effect in NB4 cells via the induction of apoptosis assessed by morphology, proliferation assay, DNA electrophoresis, Annexin V-FITC/PI staining and caspase-3 activation. And citral induced apoptosis of NB4 cells in a dose- and time-dependent manner. In addition, citral treatment induced decreased mitochondrial membrane potential, indicating that citral induced apoptosis via the mitochondrial pathway. Bax up-regulation and Bcl-2 down-regulation on mRNA level and NF-κB down-regulation on protein level was found in this study, suggesting that Bcl-2, Bax and NF-κB may be involved in the mechanism of the apoptotic effect of citral on NB4 cells. These data suggest that citral has a potential therapeutic effect on leukemia.  相似文献   

9.
Tanshinone IIA, a diterpene quinone extracted from the traditional herbal medicine, Salvia miltiorrhiza Bunge, is used widely and successfully in clinics in China for treating inflammatory diseases. Recently tanshinone IIA has been reported to have apoptosis inducing effects on a large variety of cancer cells. In this study, the anti-proliferation and apoptosis inducing effects of tanshinone IIA as well as its influence on cell adhesion to and invasion through the extracellular matrix (ECM) on acute promyelocytic leukemia (APL) NB4 cells in vitro were studied. Cell proliferation was assessed by MTT assay, cell apoptosis was observed by Hoechst 33258 staining and flow cytometry (FCM); The variation of caspase-3 and apoptotic related genes were assayed by Western blotting, cell mitochondrial membrane potential as well as cell adhesive and invasive effects were also investigated by using standard methods. The results showed that tanshinone IIA exhibited induction of apoptosis by activation of caspase-3, downregulation of anti-apoptotic protein bcl-2 and bcl-xl and upregulation of pro-apoptotic protein bax, as well as disruption of the mitochondrial membrane potential. Furthermore, treatment by tanshinone IIA could reduce cell adhesion to and invasion through ECM in leukemia NB4 cells. These data provide a potential mechanism for tanshinone IIA-induced apoptosis and cell growth inhibition in leukemia NB4 cells, suggesting that tanshinone IIA may serve as an effective adjunctive reagent for the treatment of APL.Contributed equally to this study.  相似文献   

10.
No Abstract Available

Key Words:

APL (acute promyelocyctic leukemia), As2O3, PML (promyelocytic leukemia) gene, PML/RARa fusion protein, HDAC (histone deacetylase inhibitor)  相似文献   

11.
Crocetin, the major carotenoid in saffron, exhibits potent anticancer effects. However, the antileukemic effects of crocetin are still unclear, especially in primary acute promyelocytic leukemia (APL) cells. In the current study, the potential antipromyelocytic leukemia activity of crocetin and the underlying molecular mechanisms were investigated. Crocetin (100 µM), like standard anti-APL drugs, all-trans retinoic acid (ATRA, 10 µM) and As2O 3 (arsenic trioxide, 50 µM), significantly inhibited proliferation and induced apoptosis in primary APL cells, as well as NB4 and HL60 cells. The effect was associated with the decreased expressions of prosurvival genes Akt and BCL2, the multidrug resistance (MDR) proteins, ABCB1 and ABCC1 and the inhibition of tyrosyl-DNA phosphodiesterase 1 (TDP1), while the expressions of proapoptotic genes CASP3, CASP9, and BAX/BCL2 ratio were significantly increased. In contrast, crocetin at relatively low concentration (10 µM), like ATRA (1 µM) and As 2O 3 (0.5 µM), induced differentiation of leukemic cells toward granulocytic pattern, and increased the number of differentiated cells expressing CD11b and CD14, while the number of the immature cells expressing CD34 or CD33 was decreased. Furthermore, crocetin suppressed the expression of clinical marker promyelocytic leukemia/retinoic acid receptor-α ( PML/RARα) in NB4 and primary APL cells, and reduced the expression of histone deacetylase 1 ( HDAC1) in all leukemic cells. The results suggested that crocetin can be considered as a candidate for future preclinical and clinical trials of complementary APL treatment.  相似文献   

12.
13.
Arsenic trioxide (As2O3) has been shown to be even more effective than all-trans retinoid (ATRA) in the treatment of acute promyelocytic leukemia (APL). The combination of induction of apoptosis, induction of differentiation and inhibiting the proliferation, and killing of APL cells could be the main cellular mechanisms of As2O3 in APL treatment. As2O3 may affect APL cells by disturbing the activities of some important intracorporal enzymes, regulating the related gene expression and arresting the progression of cell cycle.  相似文献   

14.
Jung HS  Kim HS  Lee MJ  Shin HY  Ahn HS  Ryu KH  Seoh JY  Kim CJ  Jang JJ 《FEBS letters》2006,580(20):4969-4975
Arsenic trioxide (As(2)O(3)) induces both the differentiation and apoptosis of acute promyelocytic leukemia cells in a concentration dependent manner. We assessed the effects of As(2)O(3) in CADO-ES Ewing's sarcoma (ES), JK-GMS peripheral primitive neuroectodermal tumor (PNET), and SH-SY5Y neuroblastoma cells, as they share common histogenetic backgrounds. As(2)O(3) at low concentrations (0.1-1 microM) induced SH-SY5Y differentiation, and whereas PNET cells acquired a slightly differentiated phenotype, change was minimal in ES cells. Extracellular signal-regulated kinase 2 (ERK2) was activated at low As(2)O(3) concentrations, and PD98059, an inhibitor of MEK-1, blocked SH-SY5Y cell differentiation by As(2)O(3). High concentrations (2-10 microM) of As(2)O(3) induced the apoptosis in all three cell lines, and this was accompanied by the activation of c-jun N-terminal kinase. The generation of H(2)O(2) and activation of caspase 3 were identified as critical components of As(2)O(3)-induced apoptosis in all of the above cell lines. Fibroblast growth factor 2 enhanced As(2)O(3)-induced apoptosis in JK-GMS cells. The overall effects of As(2)O(3) strongly suggest that it has therapeutic potential for the treatment of ES/PNET.  相似文献   

15.
16.
Treatment with 1-4 microM As(2)O(3) slightly induced apoptosis in U-937 human promonocitic leukemia cells. This effect was potentiated by co-treatment with MEK/ERK (PD98059, U0126) and JNK (SP600125, AS601245) inhibitors, but not with p38 (SB203580, SB220025) inhibitors. However, no potentiation was obtained using lonidamine, doxorubicin, or cisplatin instead of As(2)O(3). Apoptosis potentiation by mitogen-activated protein kinase (MAPK) inhibitors involved both the intrinsic and extrinsic executionary pathways, as demonstrated by Bax activation and cytochrome c release from mitochondria, and by caspase-8 activation and Bid cleavage, respectively; and the activation of both pathways was prevented by Bcl-2 over-expression. Treatment with MEK/ERK and JNK inhibitors, but not with p38 inhibitors, caused intracellular glutathione (GSH) depletion, which was differentially regulated. Thus, while it was prevented by N-acetyl-L-cysteine (NAC) in the case of U0126, it behaved as a NAC-insensitive process, regulated at the level of DL-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, in the case of SP600125. The MEK/ERK inhibitor also potentiated apoptosis and decreased GSH content in As(2)O(3)-treated NB4 human acute promyelocytic leukemia (APL) cells, but none of these effects were produced by the JNK inhibitor. MEK/ERK and JNK inhibitors did not apparently affect As(2)O(3) transport activity, as measured by intracellular arsenic accumulation. SP600126 greatly induced reactive oxygen species (ROS) accumulation, while BSO and U0126 had little or null effects. These results, which indicate that glutathione is a target of MAP kinases in myeloid leukemia cells, might be exploited to improve the antitumor properties of As(2)O(3), and provide a rationale for the use of kinase inhibitors as therapeutic agents.  相似文献   

17.
We recently reported that butyrate, an inhibitor of histone deacetylases, is capable of inducing Fas-independent apoptosis in the acute lymphoblastic leukemia cell line CCRF-CEM. Here we demonstrate that butyrate enhances Fas-induced apoptosis in this cell line. The application of different histone deacetylase inhibitors revealed that tetra-acetylated histone H4 is associated with the amplifying effect of butyrate on Fas-induced cell death. FasL, Fas, FADD, RIP, caspase-8, caspase-3, Bid, FLIP(S+L), FLASH and FAP-1, proteins known to act within the Fas-apoptosis cascade, showed no changes in their expression levels in cells treated with butyrate compared with untreated cells. Analyses of Fas-oligomerization and Western blotting as well as enzyme activity assays of caspase-2, caspase-3 and caspase-8 suggest that butyrate enhances Fas-induced apoptosis downstream of Fas but upstream of caspase-8 activation. In immunoprecipitation experiments a 37 kD butyrate-regulated protein was detected which specifically interacts with caspase-8.  相似文献   

18.
Arsenic trioxide (As(2)O(3)) is highly effective in the treatment of acute promyelocytic leukemias that express the promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARalpha) fusion protein. However, evidence has accumulated that As(2)O(3) induces apoptosis regardless of PML-RARalpha status. Here we show that, at clinically relevant concentrations, As(2)O(3) causes S and G(2)M phase arrest of both PML-RARalpha-positive and -negative leukemia cell lines, thus inhibiting their growth. Apoptotic cells are generated predominately from the G(2)M fraction. Using several independent methods, we demonstrate that the cells accumulated in the G(2)M peak consist primarily of cells arrested in the early stages of mitosis, prophase, prometaphase and metaphase. In mitotic cells, there was significant activation of caspases, PARP cleavage, and morphological changes characteristic of apoptosis. Unlike microtubule-active drugs that arrest cells in metaphase, arsenic trioxide did not affect the architecture of microtubules. Our data suggest that the antileukemic activities of arsenic may be a result of mitotic arrest which culminates in apoptosis.  相似文献   

19.
Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RARα and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.  相似文献   

20.
The therapeutic and preventive activities of retinoids in cancer are due to their ability to modulate the growth, differentiation, and survival or apoptosis of cancer cells. Here we show that in NB4 acute promyelocytic leukemia cells, retinoids selective for retinoic-acid receptor-alpha induced an autoregulatory circuitry of survival programs followed by expression of the membrane-bound tumor-selective death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand, also called Apo-2L). In a paracrine mode of action, TRAIL killed NB4 as well as heterologous and retinoic-acid-resistant cells. In the leukemic blasts of freshly diagnosed acute promyelocytic leukemia patients, retinoic-acid-induced expression of TRAIL most likely caused blast apoptosis. Thus, induction of TRAIL-mediated death signaling appears to contribute to the therapeutic value of retinoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号