首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface structure of the ciliary zone in 13 species of ciliates found in the large intestine of the horse was observed by scanning electron microscopy. In Holophryoides ovalis many fine depressions considered to be a result of phagocytosis or pinocytosis in the naked cytostome were noticed. In Blepharocorys spp. a distinct section was present between the portion with cilia and that without cilia. It was not present, however, in some species of the family Buetschliidae, such as Bundleia postciliata and Didesmis spp. The species of Entodiniomorphida had a lip around the ciliary zone with cilia forming synciliary tufts. In Spirodinium equi and Tetratoxum unifasciculatum the ciliary zone revolved counter-clockwise in an en face view. Some differences in the surface structure of the ciliary zone between the entodiniomorphid and spirotrich ciliates are discussed.  相似文献   

2.
cGMP reduced the short-circuit current (I SC) when applied to the aqueous surface of isolated rabbit and cat ciliary epithelia. cGMP either stimulated (in the rabbit) or had no effect (in the cat) on I SC when applied to the stromal surface. Addition of the cGMP-mediated hormone atrial natriuretic peptide (ANP) to the stromal (but not the aqueous) surface, or the nitrovasodilator sodium nitroprusside to the stromal surface, inhibited I SC across rabbit ciliary epithelium.The response to stromal cGMP was partly mediated by K+ channels at the stromal surface of the rabbit pigmented epithelial (PE) cells, since the effect was inhibited by stromal Ba2+, and was unaffected by Cl replacement, by bumetanide, or by DIDS. In contrast, the response to aqueous cGMP was not likely mediated by changing either K+ or Cl channels, based on transepithelial measurements of rabbit ciliary epithelium and complementary whole-cell patch clamping of cultured human nonpigmented ciliary epithelial (NPE) cells. The possibility of interacting effects between cGMP and cAMP in targeting the Na+,K+-exchange pump was also considered. Strophanthidin blocked the responses to either aqueous or stromal cGAMP. Applying 10 m forskolin to generate endogenous cAMP enhanced the subsequent response to aqueous cGMP by 80%.We conclude that cGMP has at least two actions on the ciliary epithelium. The major effect may be to reverse cAMP-mediated inhibition of the NPE Na+ pumps at the aqueous surface of both rabbit and cat ciliary epithelia. The second effect is likely mediated by increasing K+-channel and pump activity of the rabbit PE cells at the stromal surface.Supported in part by research grants from the National Institutes of Health [EY10691 and EY00785 (for core facilities)] and from the American Health Assistance Foundation. We are grateful to Dr. Miguel Coca-Prados for graciously providing us with the ODM/SV40 NPE cells, and thank Prof. Rainer Greger (Albert-Ludwigs-Universitat, Freiburg, FRG) for kindly providing the NPPB.  相似文献   

3.
Ciliated protozoa possess cellular axes reflected in the arrangement of their ciliature. Upon transverse fission, daughter cells develop an identical ciliary pattern, ensuring perpetuation of the cellular phenotype. Experimentally manipulated cells can be induced to form atypical phenotypes, capable of intraclonal propagation and regeneration after encystment. One such phenotype in the ciliate Tetmemena pustulata (formerly Stylonychia pustulata) is the mirror-imaged doublet. These cells possess two distinct sets of ciliature, juxtaposed on the surfaces in mirror image symmetry, with a common anterior-posterior axis. We have examined whether individual ciliary components of Tetmemena mirror-image doublets are mirror imaged. Ultrastructural analysis indicates that despite global mirror imaging of the ciliature, detailed organization of the membranelles is reversed in the mirror-image oral apparatus (OA), such that the ciliary effective stroke propels food away from the OA. Assembly of compound ciliary structures of both OAs starts out identically, but as the structures associated with the mirror-image OA continue to form, the new set of membranelles undergoes a 180° planar rotation on the ventral surface relative to the same structures in the typical OA. The overall symmetry of the OA thus appears to be separable from the more localized assembly of individual basal bodies. True mirror imagery of the membranelles would require new enantiomorphic forms of the individual ciliary components, particularly the basal bodies, which is never observed. These observations suggest a mechanistic hypothesis with implications for the development of left-right asymmetry not only in ciliates, but perhaps also in development of left-right asymmetry in general.  相似文献   

4.
《The Journal of cell biology》1983,97(5):1421-1428
Immobilization of Paramecium followed the binding of antibodies to the major proteins of the ciliary membrane (the immobilization antigens, i- antigens, approximately 250,000 mol wt). Immunoelectron microscopy showed this binding to be serotype-specific and to occur over the entire cell surface. Antibody binding also reduced the current through the Ca-channel of the excitable ciliary membrane as monitored using a voltage-clamp. The residual Ca-current appeared normal in its voltage sensitivity and kinetics. As a secondary consequence of antibody binding, the Ca-induced K-current was also reduced. The resting membrane characteristics and other activatable currents, however, were not significantly altered by the antibody treatment. Since monovalent fragments of the antibodies also reduced the current but did not immobilize the cell, the electrophysiological effects were not the secondary consequences of immobilization. Antibodies against the second most abundant family of proteins (42,000-45,000 mol wt) had similar electrophysiological effects as revealed by experiments in which the Paramecia and the serum were heterologous with respect to the i-antigen but homologous with respect to the 42,000-45,000-mol-wt proteins. Protease treatment, shown to remove the surface antigen, also caused a reduction of the Ca-inward current. The loss of the inward Ca-current does not seem to be due to a drop in the driving force for Ca++ entry since increasing the external Ca++ or reducing the internal Ca++ (through EGTA injection) did not restore the current. Here we discuss the possibilities that (a) the major proteins define the functional environment of the Ca-channel and that (b) the Ca-channel is more susceptible to certain general changes in the membrane.  相似文献   

5.
The percentage allocations of ciliary units to each ciliary row across the dorsal surface were assessed for seven marine and five freshwater populations, representing the most commonly collected morphotypes of the genus Euplotes. In marine forms, there is a spectrum of dorsal kinetosomal distributions, within which is included the characteristic distribution for the vannus complex of sibling species. In contrast, there are only two basic ciliary patterns on the dorsal surface of the most ubiquitous freshwater “species”. The congruence between the classification of morphotypes based on dorsal ciliary patterns and that based on ventral cirral patterns is remarkable, despite the morphogenetic independence of kinetosomal structures on these two surfaces.  相似文献   

6.

Background

Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context.

Results

After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia.

Conclusions

Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct ciliary band muscle and flask-shaped epidermal serotonergic cells of the apical organ. Based on current phylogenies, the distribution of ciliary bands and apical organs between polyclads and other spiralians is not congruent with a hypothesis of homology. However, some similarities exist, and this study sets an anatomical framework from which to investigate cellular and molecular mechanisms that will help to distinguish between parallelism, convergence and homology of these features.  相似文献   

7.
Matsumoto  G. I. 《Hydrobiologia》1991,(1):319-325
This study focuses on the mechanics of ciliary movement of ctenophores in relation to locomotion and feeding, with field and laboratory observations documented with 35 mm photographs and video sequences. Movement through the water is strongly modified by subtleties of body morphology. Whereas the entire ctenophore moves in a flow regime where the Reynolds numbers range from 100 to 6000, the cilia on the surface of the ctenophores move in a flow regime where the Reynolds numbers range only from 10 to 300. The water flow patterns seen by use of fluorescein dye do not match any current model of ciliary flow and assumptions for a new model are postulated. Ctenophores exhibit a wide variety of morphological adaptations that reduce drag, and a variety of behaviours that exploit fine-scale water movements for prey capture.  相似文献   

8.
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.  相似文献   

9.
A mathematical model is proposed to explain the dependence of the direction and the length of the metachronal wave on parameters that characterize the ciliary beat, the dimensions of the cilia, and the geometry of their arrangement on the ciliated surface. The metachronal wave is decomposed into two mutually perpendicular components, which are chosen in such a way that the direction of one of them is in the direction of the effective stroke. The magnitudes of the two components are determined by using the concept of the time of delay between adjacent cilia. The properties of the metachronal wave are then calculated as a function of the ciliary parameters. The results obtained with the present model predict that the direction of the wave propagation is strongly dependent on the type of metachronism in the direction of the effective stoke and the polarization in time and in space of the ciliary beat. The metachronal wavelength is found to depend on four parameters: the ciliary length, the angle of the arc projected on the cell surface by the ciliary tip during the recovery stroke, the degree of asymmetry of ciliary beat, and the portion of the cycle occupied by the pause. The metachronal wavelength is also found to be only weakly dependent on the ciliary frequency. At this stage there exists relatively little experimental information with which to characterize fully the metachronal properties of ciliary systems. Even when only partial information exists, the model allows prediction, to within a certain range, of the direction of the wave propagation. It also suggests a possible mechanism for the influence of changes in environmental conditions on wave direction and wavelength. In several cases in which full information does exist, good agreement between the experimental findings and the predictions of the model is found. According to this model it will be worthwhile to invest more effort in measuring the time and space polarization of ciliary beating and times of delay between cilia.  相似文献   

10.
The role of ciliary geometry for transduction events was explored by numerical simulation. The changes in intraciliary ion concentrations, suspected to occur during transduction, could thus be estimated. The case of a single excised cilium, having a uniform distribution of membrane channels, voltage clamped to -80 mV, was especially investigated. The axial profile of membrane voltage was that of a leaky cable. The Ca(2+) concentration profile tended to show a maximum in proximal segments, due to a preponderance of Ca(2+) inflow over Ca(2+) export at those locations. The local increase in Ca(2+) concentration activated Cl(-) channels. The resulting current caused a local drop in Cl(-) concentration, especially at the tip of the cilium and in distal segments, accompanied by a drop in ciliary K(+) concentration. In consequence, the membrane Cl(-) current was low in distal segments but stronger in proximal segments, where resupply was sufficient. The model predicts that the Cl(-) depletion will codetermine the time course of the receptor potential or current and the ciliary stimulus-response curve. In conclusion, when modeling with transduction elements presently known to participate, the ciliary geometry has large effects on ion distributions and transduction currents because ciliary ion transport is limited by axial electrodiffusion.  相似文献   

11.
Quantitative relations between ciliary reversal and membrane responses were examined in electrically stimulated paramecia. Specimens bathed in 1 mM CaCl2, 1 mM KCl, and 1 mM Tris-HCl, pH 7.2, were filmed at 250 frames per second while depolarizing current pulses were injected. At current intensities producing only electrotonic shifts the cilia failed to respond. Stimuli which elicited a regenerative response were followed by a period of reversed ciliary beating. With increasing stimulus intensities the latency of ciliary reversal dropped from 30 to 4 ms or less, and the duration of reversal increased from 50 ms to 2.4 s or more; the corresponding regenerative responses increased in amplitude and rate of rise. With progressively larger intracellular positive pulses, electric stimulation became less effective, producing responses with a progressive increase in latency and decrease in duration of reversed beating of the cilia. When 100-ms pulses shifted the membrane potential to +70 mV or more, ciliary reversal was suppressed until the end of the pulse. "Off" responses then occurred with a latency of 2–4 ms independent of further increases in positive potential displacement. These results suggest that ciliary reversal is coupled to membrane depolarization by the influx of ions which produces the regenerative depolarization of the surface membrane. According to this view suppression of the ciliary response during stimulation occurs when the membrane potential approaches the equilibrium potential of the coupling ion, thereby retarding its influx. Previous data together with the present findings suggest that this ion is Ca2+.  相似文献   

12.
SYNOPSIS. Electron-dense deposits indicating possible Ca-binding sites were found at the ciliary base of Paramecium caudatum fixed in a glutaraldehyde solution containing 5 mM CaCl2. The deposits appeared mainly at the inner surface of the ciliary membrane above the "ciliary necklace" region, although they could also occur in the space between the outer and the central microtubules. In some cases a ring of exactly 9 deposits was found in a ciliary cross section of a cilium.  相似文献   

13.
To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.  相似文献   

14.
An ultrastructural study of the larval integument of the sea urchin, Hemicentrotus pulcherrimus , was conducted with special emphasis on the development of the nervous system in relation to the formation of ciliary bands. In the integument of 4-armed pluteus larvae, cells associated with the ciliary band, which have 200 nm-thick projections at their apices, and cells in the squamous epithelium, which have a cilium and long, fine radiating processes in the apical region, were observed. Both cell types have axons at their basal ends that form nerve bundles beneath the ciliary bands, where the axons make contact with ectodermal effector cells with motile cilia. The cilia and other apical projections of these ectoneural cells run parallel to the surface of the cells, and are under the hyaline layer. The axoneme of the cilium has a typical "9 + 2" microtubular arrangement, but generally has no dynein arms. These ectoneural cells are more frequent on the oral surface than on the antioral surface.  相似文献   

15.
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.  相似文献   

16.
《Organogenesis》2013,9(1):138-157
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.  相似文献   

17.
The development of the saccule of the inner ear in the toadfish was studied using light and scanning electron microscopy. Development was studied from the early embryo (2-3 days postfertilization), when the otocyst first forms, to the early-aged juvenile when the development of the inner ear approximates that of the adult (4 weeks postfertilization). The ultrastructural features examined included the morphological sequence of ciliary bundle growth, the development of orientation patterns of the ciliary bundles, and the relation of the ultrastructural development to overall gross development. Gross development may be divided into four distinct morphological stages. Stage I encompasses the time from initial formation of the otocyst until the start of stage II, which is the stage when the pars inferior begins migrating ventrally. In stage III the pars inferior continues to elongate ventrally. Stage IV starts when the pars inferior elongates in a rostral and caudal direction. The ear attains its adult shape in stage IV. The differentiation of the sensory cells begins during stage I. During the early part of stage I, a small cilium is found on the apical surface of each cell throughout the otocyst. In the middle and late periods of stage I, a few microvillous buds add to the surface of the cells that already have a kinocilium. These early ciliary bundles are clustered on the rostral-ventral and caudal walls of the otocyst. There is no clear patterning to the orientation of these ciliary bundles. In stage II the ventral stretching of the labyrinth wall causes a spreading of the clustered bundles along the ventral and medial walls of the pars inferior. The orientation of the ciliary bundles has no distinct pattern. In stage III the orientations of the ciliary bundles appear adultlike, although there are so few ciliary bundles that it is difficult to make a definite determination. During stage IV, hair cells with an adultlike horizontal and vertical orientation pattern are found on the rostral and caudal sections of the saccular macula, respectively. The transition region lying between these areas has ciliary bundles with various orientations.  相似文献   

18.
Photoelectric signals were created and used to investigate the features of the signals as a function of the ciliary beat parameters. Moreover, correlation between the simulated and the measured signals permitted measurement of the cilium beat parameters. The simulations of the signals were based on generation of a series of time-frozen top-view frames of an active ciliary area and determination of the amount of light passing through an observation area in each of these frames. All the factors that might contribute to the shape of the signals, namely, partial ciliary transmittance of light, three-dimensional ciliary beat (composed of recovery, effective, and pause parts), phase distribution on the ciliary surface, and the large number of cilia that contribute to the photoelectric signal, were taken into account in generation of the signals. Changes in the ciliary parameters influenced the shape of the photoelectric signals, and the different phases of the beat could not be directly and unequivocally identified in the signals. The degree of temporal asymmetry of the beat and the portion of the cycle occupied by the pause significantly influenced the shapes of both the lower and the upper parts of the signal and the slopes of the signal. Increases in the angle of the arc swept by the cilium during the effective stroke smoothed the signals and increased the duration of the upper part of the signal. The angle of the arc projected by the cilium onto the cell surface during the recovery stroke had minor effects on the signal's shape. Characteristics of the metachronal wave also influenced the signal's shape markedly. Decreases in ciliary spacing smoothed the signals, whereas ciliary length had a minor influence on the simulated photoelectric signals. Comparison of the simulated and the measured signals showed that the beat parameters of the best-fitting simulated signals converged to values that agree well with the accepted range of beat parameters in mucociliary systems.  相似文献   

19.
Changes in surface structures of the olfactory epithelium, olfactorynerve and olfactory nerve layer in the olfactory bulb followingolfactory nerve section were studied, by scanning electron microscopy,in the frog. Correlative neurophysiological responses were recordedfrom the olfactory epithelium in response to odor stimulation.Examination of the epithelial surface showed degeneration andloss of the dense ciliary matrix and olfactory knobs by day10, which exposed the microvillar surface of the sustentacularcells. The amplitude of slow voltage transients recorded fromthe epithelial surface systematically decreased through day10. By day 40, the olfactory epithelium became responsive toodor stimulation. At this time partial renewal of the ciliarymatrix on the epithelial surface and bundles of receptor cellaxons in the olfactory nerve layer of the olfactory bulb wereobserved. There was substantial replacement of the ciliary matrixby day 100; in contrast, considerably less recovery of the slowvoltage transient was evident. Recovery of odor-evoked responsivity lagged behind recovery of the ciliary matrix. Therefore,these data imply that the reappearance of olfactory knobs andcilia is causally related to the recovery of the slow voltagetransients.  相似文献   

20.
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号