首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational control is a critical process in the spatio-temporal restriction of protein production. In Drosophila oogenesis, translational repression of oskar (osk) RNA during its localization to the posterior pole of the oocyte is essential for embryonic patterning and germ cell formation. This repression is mediated by the osk 3' UTR binding protein Bruno (Bru), but the underlying mechanism has remained elusive. Here, we report that an ovarian protein, Cup, is required to repress precocious osk translation. Cup binds the 5'-cap binding translation initiation factor eIF4E through a sequence conserved among eIF4E binding proteins. A mutant Cup protein lacking this sequence fails to repress osk translation in vivo. Furthermore, Cup interacts with Bru in a yeast two-hybrid assay, and the Cup-eIF4E complex associates with Bru in an RNA-independent manner. These results suggest that translational repression of osk RNA is achieved through a 5'/3' interaction mediated by an eIF4E-Cup-Bru complex.  相似文献   

2.
The Drosophila gene vasa (vas) encodes an RNA-binding protein required for embryonic patterning and germ cell specification. In vas mutants, translation of several germline mRNAs is reduced. Here we show that VAS interacts directly with the Drosophila homolog of yeast translation initiation factor 2, encoded by a novel gene, dIF2. Embryos produced by vas/+; dIF2/+ females have pattern defects and fewer germline progenitor cells, indicating a functional interaction between endogenous vas and dIF2 activities. Mutations in other translation initiation factors do not enhance the vas phenotype, suggesting that dIF2 has a particular role in germ plasm function. We conclude that VAS regulates translation of germline mRNAs by specific interaction with dIF2, an essential factor conserved from bacteria to humans.  相似文献   

3.
Shin BS  Maag D  Roll-Mecak A  Arefin MS  Burley SK  Lorsch JR  Dever TE 《Cell》2002,111(7):1015-1025
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.  相似文献   

4.
The interaction between turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) and Arabidopsis thaliana eukaryotic initiation factor (iso)4E (eIF(iso)4E) was investigated to address the influence of potyviral VPg on host cellular translational initiation. Affinity chromatographic analysis showed that the region comprising amino acids 62-70 of VPg is important for the interaction with eIF(iso)4E. In vitro translation analysis showed that the addition of VPg significantly inhibited translation of capped RNA in eIF(iso)4E-reconstituted wheat germ extract. This result indicates that VPg inhibits cap-dependent translational initiation via binding to eIF(iso)4E. The inhibition by VPg of in vitro translation of RNA with wheat germ extract did not depend on RNase activity. Our present results may indicate that excess VPg produced at the encapsidation stage shuts off cap-dependent translational initiation in host cells by inhibiting complex formation between eIF(iso)4E and cellular mRNAs.  相似文献   

5.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

6.
DEAD-box proteins are ATP-dependent RNA helicases that function in various stages of RNA processing and in RNP remodeling. Here, we report identification and characterization of the Drosophila protein Belle (Bel), which belongs to a highly conserved subfamily of DEAD-box proteins including yeast Ded1p, Xenopus An3, mouse PL10, human DDX3/DBX, and human DBY. Mutations in DBY are a frequent cause of male infertility in humans. Bel can substitute in vivo for Ded1p, an essential yeast translation factor, suggesting a requirement for Bel in translation initiation. Consistent with an essential cellular function, strong loss of function mutations in bel are recessive lethal with a larval growth defect phenotype. Hypomorphic bel mutants are male-sterile. Bel is also closely related to the Drosophila DEAD-box protein Vasa (Vas), a germ line-specific translational regulator. We find that Bel and Vas colocalize in nuage and at the oocyte posterior during oogenesis, and that bel function is required for female fertility. However, unlike Vas, Bel is not specifically enriched in embryonic pole cells. We conclude that the DEAD-box protein Bel has evolutionarily conserved roles in fertility and development.  相似文献   

7.
8.
Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3.  相似文献   

9.
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.  相似文献   

10.
The strategies developed by internal ribosome entry site (IRES) elements to recruit the translational machinery are poorly understood. In this study we show that protein-RNA interaction of the eIF4G translation initiation factor with sequences of the foot-and-mouth disease virus (FMDV) IRES is a key determinant of internal translation initiation in living cells. Moreover, we have identified the nucleotides required for eIF4G-RNA functional interaction, using native proteins from FMDV-susceptible cell extracts. Substitutions in the conserved internal AA loop of the base of domain 4 led to strong impairment of both eIF4G-RNA interaction in vitro and IRES-dependent translation initiation in vivo. Conversely, substitutions in the vicinity of the internal AA loop that did not impair IRES activity retained their ability to interact with eIF4G. Direct UV-crosslinking as well as competition assays indicated that domains 1-2, 3, and 5 of the IRES did not contribute to this interaction. In agreement with this, binding to domain 4 alone was as efficient as to the full-length IRES. The C-terminal fragment of eIF4G, proteolytically processed by the FMDV Lb protease, was sufficient to interact with the IRES or to its domain 4 alone. Additionally, we show here that binding of the eIF4B initiation factor to the IRES required domain 5 sequences. Moreover, eIF4G-IRES interaction was detected in the absence of eIF4B-IRES binding, suggesting that both initiation factors interact with the 3' region of the IRES but use different residues. The strong correlation found between eIF4G-RNA interaction and IRES activity in transfected cells suggests that eIF4G acts as a linker to recruit the translational machinery in IRES-dependent initiation.  相似文献   

11.
12.
Maskin regulates assembly of the eIF4F translation initiation complex on messenger RNAs that contain cytoplasmic polyadenylation elements (CPEs) in their 3' untranslated regions. Because Maskin and eIF4G contain similar peptide motifs that bind eIF4E, they compete for occupancy of this factor and consequently control translation. One mRNA that is regulated by Maskin encodes cyclin B1, whose translation oscillates with the early cell cycles of Xenopus laevis embryos. Here we show that Maskin phosphorylation-dephosphorylation also oscillates with the cell cycle and is controlled by the kinase CDK1 and the phosphatase calcineurin. These phosphorylation events control the Maskin-eIF4E interaction and, as a result, translation of cyclin B1 mRNA. Cell cycle progression requires this Maskin-mediated translational regulation.  相似文献   

13.
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.  相似文献   

14.
In Drosophila, posterior embryonic body patterning and germ cell formation rely on Oskar, a protein that is concentrated at the posterior pole of the oocyte. A program of mRNA localization and translational regulation ensures that Oskar is only expressed at the proper location. One key regulatory factor is Bruno, which represses translation of oskar mRNA before its localization. Ectopic expression of a bruno cDNA prolongs repression, even after oskar mRNA is localized, and posterior body patterning is efficiently and selectively blocked. Surprisingly, the initial accumulation of Oskar, while frequently reduced, is not eliminated, arguing that levels of Oskar previously thought to be sufficient for patterning do not suffice, or that Bruno acts at a downstream step in patterning. Expression of the bruno cDNA does not inhibit posterior patterning when Oskar is expressed independent of Bruno-mediated regulation, ruling out a downstream requirement for Bruno. Notably, an Oskar::GFP reporter protein reveals continual accumulation during the late phases of oogenesis. Taken together, these results strongly argue that a late phase in accumulation of Osk protein, typically not monitored because of imperviousness of late stage oocytes to antibodies, is crucial for body patterning.  相似文献   

15.
16.
The GTP-binding eukaryotic translation initiation factor eIF2 delivers initiator methionyl-tRNA to the 40 S ribosomal subunit. The factor eIF5 stimulates hydrolysis of GTP by eIF2 upon AUG codon recognition, whereas the factor eIF2B promotes guanine nucleotide exchange on eIF2 to recycle the factor for additional rounds of translation initiation. The GTP-binding (G) domain resides in the gamma subunit of the heterotrimeric eIF2; however, only eIF2beta, and not eIF2gamma, has been reported to directly bind to eIF5 or eIF2B. Using proteins expressed in yeast or recombinant systems we show that full-length yeast eIF2gamma, as well as its isolated G domain, binds directly to eIF5 and the epsilon subunit of eIF2B, and we map the interaction sites to the catalytically important regions of these factors. Consistently, an internal deletion of residues 50-100 of yeast eIF5 impairs the interaction with recombinant eIF2gamma-G domain and abolishes the ability of eIF5 to stimulate eIF2 GTPase activity in translation initiation complexes in vitro. Thus, rather than allosterically regulating eIF2gamma-G domain function via eIF2beta, our data support a model in which the GTPase-activating factor eIF5 and the guanine-nucleotide exchange factor eIF2B modulate eIF2 function through direct interactions with the eIF2gamma-G domain.  相似文献   

17.
In wheat germ, the interaction between poly(A)-binding protein and eukaryotic initiation factor eIF 4G increases the affinity of eIF4E for the cap by 20-40-fold. Recent findings that wheat germ eIF4G is required for interaction with the IRES, pseudoknot 1 (PK1), of tobacco etch virus to promote cap-independent translation led us to investigate the effects of PABP on the interaction of eIF4F with PK1. The fluorescence anisotropy data showed addition of PABP to eIF4F increased the binding affinity approximately 2.0-fold for PK1 RNA as compared with eIF4F alone. Addition of both PABP and eIF4B to eIF4F enhance binding affinity to PK1 about 4-fold, showing an additive effect rather than the large increase in affinity shown for cap binding. The van't Hoff analyses showed that PK1 RNA binding to eIF4F, eIF4F.PABP, eIF4F.4B and eIF4F.4B.PABP is enthalpy-driven and entropy-favorable. PABP and eIF4B decreased the entropic contribution 65% for binding of PK1 RNA to eIF4F. The lowering of entropy for the formation of eIF4F.4B.PABP-PK1 complex suggested reduced hydrophobic interactions for complex formation. Overall, these results demonstrate the first direct effect of PABP on the interaction of eIF4F and eIF4F.4B with PK1 RNA.  相似文献   

18.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

19.
In neurons, translational regulation of gene expression has been implicated in the activity-dependent management of synapto-dendritic protein repertoires. However, the fundamentals of stimulus-modulated translational control in neurons remain poorly understood. Here we describe a mechanism in which regulatory brain cytoplasmic (BC) RNAs cooperate with eukaryotic initiation factor 4B (eIF4B) to control translation in a manner that is responsive to neuronal activity. eIF4B is required for the translation of mRNAs with structured 5′ untranslated regions (UTRs), exemplified here by neuronal protein kinase Mζ (PKMζ) mRNA. Upon neuronal stimulation, synapto-dendritic eIF4B is dephosphorylated at serine 406 in a rapid process that is mediated by protein phosphatase 2A. Such dephosphorylation causes a significant decrease in the binding affinity between eIF4B and BC RNA translational repressors, enabling the factor to engage the 40S small ribosomal subunit for translation initiation. BC RNA translational control, mediated via eIF4B phosphorylation status, couples neuronal activity to translational output, and thus provides a mechanistic basis for long-term plastic changes in nerve cells.  相似文献   

20.
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号