首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
2.
3.
4.
5.
Here we report the characterization of an Escherichia coli gene (agn43) which encodes the principal phase-variable outer membrane protein termed antigen 43 (Ag43). The agn43 gene encodes a precursor protein of 107 kDa containing a 52-amino-acid signal sequence. Posttranslational processing generates an alpha43 subunit (predicted Mr of 49,789) and a C-terminal domain (beta43) with features typical of a bacterial integral outer membrane protein (predicted Mr of 51, 642). Secondary structure analysis predicts that beta43 exists as an 18-stranded beta barrel and that Ag43 shows structural organization closely resembling that of immunoglobulin A1 protease type of exoprotein produced by pathogenic Neisseria and Haemophilus spp. The correct processing of the polyprotein to alpha43 and beta43 in OmpT, OmpP, and DegP protease-deficient E. coli strains points to an autocatalytic cleavage mechanism, a hypothesis supported by the occurrence of an aspartyl protease active site within alpha43. Ag43, a species-specific antigen, possesses two RGD motifs of the type implicated in binding to human integrins. The mechanism of reversible phase variation was studied by immunochemical analysis of a panel of well-defined regulatory mutants and by analysis of DNA sequences upstream of agn43. Evidence strongly suggests that phase variation is regulated by both deoxyadenosine methylase (Dam) and by OxyR. Thus, oxyR mutants are locked on for Ag43 expression, whereas dam mutants are locked off for Ag43 expression. We propose a novel mechanism for the regulation of phase switching in which OxyR competes with Dam for unmethylated GATC sites in the regulatory region of the agn43 gene.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.  相似文献   

14.
Type VI secretion systems (T6SS) are macromolecular machines of the cell envelope of Gram-negative bacteria responsible for bacterial killing and/or virulence towards different host cells. Here, we characterized the regulatory mechanism underlying expression of the enteroagregative Escherichia coli sci1 T6SS gene cluster. We identified Fur as the main regulator of the sci1 cluster. A detailed analysis of the promoter region showed the presence of three GATC motifs, which are target of the DNA adenine methylase Dam. Using a combination of reporter fusion, gel shift, and in vivo and in vitro Dam methylation assays, we dissected the regulatory role of Fur and Dam-dependent methylation. We showed that the sci1 gene cluster expression is under the control of an epigenetic switch depending on methylation: fur binding prevents methylation of a GATC motif, whereas methylation at this specific site decreases the affinity of Fur for its binding box. A model is proposed in which the sci1 promoter is regulated by iron availability, adenine methylation, and DNA replication.  相似文献   

15.
16.
Escherichia coli DNA adenine methyltransferase (Dam) plays essential roles in DNA replication, mismatch repair and gene regulation. The differential methylation by Dam of the two GATC sequences in the pap promoter regulates the expression of pili genes necessary for uropathogenic E.coli cellular adhesion. Dam processively methylates GATC sites in various DNA substrates, yet the two pap GATC sites are not processively methylated. We previously proposed that the flanking sequences surrounding the two pap GATC sites contribute to the enzyme's distributive methylation. We show here that replacement of the poorly methylated pap GATC sites with sites predicted to be processively methylated indeed results in an increase in Dam processivity. The increased processivity is due to a change in the methyltransfer kinetics and not the binding efficiency of Dam. A competition experiment in which the flanking sequences of only one pap GATC site were altered demonstrates that the GATC flanking sequences directly regulate the enzyme's catalytic efficiency. The GATC flanking sequences in Dam-regulated promoters in E.coli and other bacteria are similar to those in the pap promoter. Gene regulation from some of these promoters involves mechanisms and proteins that are quite different from those in the pap operon. Further, GATC sequences previously identified to remain unmethylated within the E.coli genome, but whose function remains largely unassigned, are flanked by sequences predicted to be poorly methylated. We conclude that the GATC flanking sequences may be critical for expression of pap and other Dam-regulated genes by affecting the activity of Dam at such sites and, thus, its processivity. A model is proposed, illustrating how the sequences flanking the GATC sites in Dam-regulated promoters may contribute to this epigenetic mechanism of gene expression, and how flanking sequences contribute to the diverse biological roles of Dam.  相似文献   

17.
18.
Preferential binding of SeqA protein to hemimethylated oriC, the origin of Escherichia coli chromosomal replication, delays methylation by Dam methylase. Because the SeqA-oriC interaction appears to be essential in timing of chromosomal replication initiation, the biochemical functions of SeqA protein and Dam methylase at the 13-mer L, M, and R region containing 4 GATC sequences at the left end of oriC were examined. We found that SeqA protein preferentially bound hemimethylated 13-mers but not fully nor unmethylated 13-mers. Regardless of strand methylation, the binding of SeqA protein to the hemimethylated GATC sequence of 13-mer L was followed by additional binding to other hemimethylated GATC sequences of 13-mer M and R. On the other hand, Dam methylase did not discriminate binding of 13-mers in different methylation patterns and was not specific to GATC sequences. The binding specificity and higher affinity of SeqA protein over Dam methylase to the hemimethylated 13-mers along with the reported cellular abundance of this protein explains the dominant action of SeqA protein over Dam methylase to the newly replicated oriC for the sequestration of chromosomal replication. Furthermore, SeqA protein bound to hemimethylated 13-mers was not dissociated by Dam methylase, and most SeqA protein spontaneously dissociated 10 min after binding. Also, SeqA protein delayed the in vitro methylation of hemimethylated 13-mers by Dam methylase. These in vitro results suggest that the intrinsic binding instability of SeqA protein results in release of sequestrated hemimethylated oriC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号