共查询到20条相似文献,搜索用时 15 毫秒
1.
The cDNA fragments corresponding to the domains with four consecutive E-F hand structures in the large and small subunits of chicken and rabbit calcium-activated neutral protease (CANP) were inserted into an expression vector (pUC8 or pUC18). The resulting plasmids were used to transform E. coli, and isopropyl-1-thio-beta-D-galactoside (IPTG)-inducible expression was performed. The resulting four kinds of E-F hand structure-domains (the chicken large subunit, rabbit high- and low-calcium-requiring large subunits, and rabbit small subunit) were purified and analyzed for their calcium-binding abilities and capacities by the microscale filter assay. Most of the E-F hand structures could bind calcium and 2 or 4 mol of Ca2+ ions bound to the four consecutive E-F hand structures. The calcium-binding affinity of the E-F hand structures in the large subunit roughly corresponds to the calcium concentration required for its CANP activity. 相似文献
2.
The amino acid sequences of two subunits (80K and 30K) of calcium-activated neutral protease (CANP) were examined to clarify the structure-function relationship of CANP. The 80K subunit is composed of four clear domains (I–IV from the N-terminus). Domain II is a cysteine proteinase domain homologous to cathepsins B, L, and H. Domain IV is a calcium binding domain with four consecutive EF-hand structures known as typical calcium-binding sites found in calmodulin. The 30K subunit also has a clear domain structure (two domains). The N-terminal domain, a Gly-rich hydrophobic domain, probably determines the location of CANP through association with cellular membrane. The C-terminal domain is a calmodulinlike calcium-binding domain highly homologous to IV in the 80K subunit. The protease activity ascribable to II is regulated by 2 moles of built-in calmodulins, though its precise regulation mechanism is unknown. These results are discussed together with the molecular evolution of CANP on the basis of the gene structures of the two subunits.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985. 相似文献
3.
Effect of metal ions on the structure and activity of calcium-activated neutral protease (CANP) 总被引:1,自引:0,他引:1
To clarify the mechanism of activation of calcium activated neutral protease (CANP, or mCANP: active at mM Ca2+), the structure of mCANP was examined by measuring CD spectra and by titration of SH groups in the presence of Mn2+. Mn2+ significantly increases the sensitivity of CANP to Ca2+ but CANP is not active with Mn2+ alone. The structural changes induced by Mn2+ were compared with those induced by Ca2+, and the structure of muCANP, which is active at microM Ca2+, was also examined for comparison. Mn2+ and Ca2+ induced the same structural changes of CANP. However, specific activation of the active site SH group by Ca2+ was not observed with Mn2+. Six moles of calcium bound to mCANP and the average dissociation constant of Ca2+ was 150 microM. The structure of muCANP was similar to that of mCANP in terms of the CD spectra. The titration of SH groups of muCANP indicated that the structure of muCANP was looser or SH groups were more exposed than in the case of mCANP. A model which can explain the activation of mCANP is proposed and the mechanism of activation is discussed based on the proposed model. The role of Ca2+ can be explained in terms of conformational change and activation of the active-site SH group of CANP. 相似文献
4.
To determine the substrate recognition mechanism in calcium-activated neutral protease (CANP), the hydrolytic velocities for some possible substrates were compared. In general, succinylated polypeptides were poorer substrates than unmodified ones, suggesting that CANP interacts with positively charged amino groups and/or repels negatively charged succinyl groups in substrates. Among the substrates examined, protamine was degraded quite rapidly in a restricted manner. This degradation of protamine was remarkably accelerated by the addition of salt, and, in the absence of salt, protamine was inhibitory as to the degradation of vimentin by CANP. Protamine was separated into components and the sites cleaved by CANP were determined. CANP cleaved the clupeine YII and Z components at two sites, both being arginyl-arginine bonds, and the amino acid sequences around these sites were almost identical between YII and Z. No other arginyl-arginine bond was cleaved at all. These results showed that CANP prefers basic amino acid side chains but its specificity is very restricted. 相似文献
5.
Hydrolytic and autolytic behavior of two forms of calcium-activated neutral protease (CANP) 总被引:3,自引:0,他引:3
Some endogenous substrates were incubated with two forms of calcium-activated neutral protease (CANP) with high (muCANP) and low (mCANP) sensitivities to calcium ions. In addition to analyses of the processes of their degradation, changes in the molecular properties of these CANPs were also examined. Among the tested substrate proteins, the myosin heavy chain of rabbit skeletal muscle myofibrils and spectrin or band 3 protein of human erythrocyte membranes were degraded relatively rapidly. So far as these proteins were concerned, a higher degradation velocity was observed for muCANP than for mCANP. Vimentin from ascites tumor cells was degraded most rapidly and no difference was observed in degradation velocity between muCANP and mCANP. In all cases, muCANP and mCANP produced different proteolytic peptide fragments, suggesting the different substrate-specificities of these CANPs. The degradation of substrates always accompanied the autodigestion of CANPs, and the small subunits of both CANPs were degraded in the early stage of the autodigestion. The large subunit of muCANP (79K) was converted to a 76K polypeptide via a 77K polypeptide as an intermediate. The autodigested muCANP with 76K polypeptide retained sufficient protease activity and, moreover, its calcium-sensitivity was higher than that of intact muCANP. The possibility is thus proposed that restricted autodigestion is a necessary activation step for the appearance of activity of muCANP. No such transition was observed for mCANP. 相似文献
6.
Ca2+-Activated neutral protease (CANP), that consists of 80K and 30K subunits, is converted to a low-Ca2+-requiring form by autolysis in the presence of Ca2+. Phosphatidylinositol greatly reduces the Ca2+-requirement for the autolysis of native CANP. However, this effect was not observed for CANP with a trimmed 30K subunit lacking the NH2-terminal hydrophobic and glycine-rich region. This suggests that the NH2-terminal hydrophobic region of the 30K subunit is important for the interaction of CANP with the cell membrane and that the calcium sensitivity of CANP is increased at the cell membrane through the effect of phosphatidylinositol. 相似文献
7.
We have examined hydrophobic properties of Tetrahymena CaM using the uncharged probe, n-phenyl-1-naphthylamine (NPN) fluorescence. The maximal fluorescence intensity of Tetrahymena calmodulin (CaM) is less than 1/12 of that of the bovine brain CaM. In the phosphodiesterase activation, the potency of Tetrahymena CaM, which was represented by reciprocals of the quantity of CaM required for half-maximal activation of enzyme was 22.7% respectively, of that of the bovine brain CaM. Here, Tetrahymena CaM had less hydrophobic groups exposed in the presence of Ca2+. Then Ca2+-CaM dependent enzymes require much amount of Tetrahymena CaM, comparing with the bovine brain CaM. 相似文献
8.
Comparison of low and high calcium requiring forms of the calcium-activated neutral protease (CANP) from rabbit skeletal muscle 总被引:3,自引:0,他引:3
M Inomata M Nomoto M Hayashi M Nakamura K Imahori S Kawashima 《Journal of biochemistry》1984,95(6):1661-1670
Two distinct calcium-dependent neutral proteases (CANPs) with different sensitivities to calcium ions were purified concurrently by almost the same procedures from rabbit skeletal muscle and their enzymatic properties were compared (sensitivity to various divalent metal ions, the pH dependency and heat-stability of the activity, and the hydrolytic activity towards various substrates). They were further compared chemically in terms of the state of thiol groups, the amino acid compositions of subunits and the peptide fragments by digestion with S. aureus V8 protease. The low calcium requiring form of CANP (microCANP) was more sensitive to other divalent metal ions such as Sr2+ and Ba2+ than the high calcium requiring form of CANP (mCANP). The comparison of the pH dependency of these CANP activities showed that microCANP was active in a broader pH range than mCANP and the former was more heat-stable than the latter. Both CANPs had similar affinity to various substrates, but the hydrolytic velocity was several times higher with microCANP than with mCANP. Although they were inhibited by thiol protease inhibitors to the same extent, the states of thiol groups in them were quite different. The thiol group involved in the catalytic activity of the enzyme was exposed without adding Ca2+ in microCANP, whereas the group in mCANP became exposed only when sufficient Ca2+ was added. The large subunits of these two CANPs were different in their amino acid compositions and in the peptide fragment patterns produced by S. aureus V8 protease but the small subunits were indistinguishable from each other. These results led us to conclude that these two CANPs are quite different in nature and are not in a simple relationship, i.e., one of them is not derived from the other by autolysis or modification. 相似文献
9.
U J Zimmerman W W Schlaepfer 《Biochemical and biophysical research communications》1985,129(3):804-811
Calcium-activated neutral protease with low affinity for calcium (CANP II, Mr 76,000) can be purified to apparent homogeneity by casein affinity chromatography but contains cyclic-AMP dependent protein kinase activity. CANP II-associated kinase from bovine brain copurifies with protease activity through multiple chromatographic procedures but can be separated by cyclic-AMP affinity chromatography. Isolated protein kinase has subunits of Mr 80,000, 53,000 and 42,000. The kinase preferentially "autophosphorylates" CANP II, but histones, phosphorylase b and neurofilament proteins are also good substrates. The concentrations for half-maximal phosphorylation activity (Km) of cyclic-AMP, (32P)ATP and Mr 150,000 neurofilament protein substrate are 0.2, 6.0 and 0.5 microM, respectively. The specific activity of CANP II associated kinase in phosphorylating neurofilament proteins is intermediate between that of neurofilament- and MAPs 2-associated kinases. 相似文献
10.
Katsuhiko Yanagisawa Shuzo Sato Nobutada Amaya Tadashi Miyatake 《Neurochemical research》1983,8(10):1285-1293
A calcium-activated neutral protease (CANP) was extracted from human brain and partially purified. The activity was measured using alkali-denatured casein (Hammersten) as a substrate. The optimum pH was around 7.0. The activity required the presence of calcium ions, maximum activity was obtained with over 5 mM calcium ions. TheK
m for the casein concentration was about 1.62 mg/ml. The activity of CANP was inhibited by one of the thiol protease inhibitors, E-64 analogue (E-64-a). The rate of inhibition was about 50% at an E-64-a concentration of 10–5M. This CANP degraded selectively basic protein in myelin proteins and the degradation was inhibited by E-64-a or EGTA. The role of the brain CANP in the process of demyelination was suggested by this study. 相似文献
11.
Regulation of the calcium-activated neutral proteinase (CANP) of bovine brain by myelin lipids 总被引:2,自引:0,他引:2
Since calcium-activated neutral proteinase (CANP; calpain) activation occurs at the plasmalemma and the enzyme is found in myelin, we examined myelin lipid activation of brain CANP. Purified lipids were dried, sonicated and incubated with purified myelin CANP. The CANP was assayed using [14C]azocasein as substrate and the Ca2+ concentration ranged from 2 microM for muCANP to 5 mM for mCANP. Phosphatidylinositol (PI), phosphatidylserine (PS) and dioleoylglycerol stimulated the mCANP activity by 193, 89 and 78%, respectively. PI stimulated both m- and muCANP in a concentration-dependent manner, while phosphatidylcholine was least effective. Cerebroside and sulfatide at higher concentrations (750 microM) were stimulatory. The phospholipid (PL)-mediated activation was inhibited by the PL-binding drug trifluoperazine. PI reduced the Ca2+ requirement for CANPs significantly (20-fold). These results suggest that acidic lipids and particularly acidic phospholipids activate membrane CANP. 相似文献
12.
Calcium-activated neutral protease (rabbit mCANP), composed of large and small subunits, was converted to a lower-Ca2+-requiring form (derived microCANP) by limited autolysis in the presence of Ca2+. The NH2-terminal regions of the two subunits of mCANP were cleaved by autolysis, but the COOH-termini remained intact after autolysis. When native mCANP or derived microCANP was dissociated into subunits, the proteolytic activity of the large subunit was reduced to 2-5% of that of the native dimeric enzyme. The Ca2+-sensitivity of one hybrid CANP reconstituted from the large subunit of derived microCANP and the small subunit of native mCANP was similar to that of derived microCANP. However, the other hybrid molecule composed of the large subunit of native mCANP and the small subunit of derived microCANP required a high concentration of Ca2+ for activity, like native mCANP. These results indicate that the Ca2+-sensitivity of derived microCANP is determined by the structural change of the large subunit resulting from loss of its NH2-terminal region. The autolysis of the small subunit apparently has no effect on the reduction of the Ca2+-requirement. 相似文献
13.
A calcium-activated neutral proteinase was purified from myelin of bovine brain white matter. Myelin purified in the presence of EDTA (2 mM) was homogenized in 50 mM Trisacetate buffer at pH 7.5, containing 4 mM EDTA, 1 mM NaN3, 5 mM -mercaptoethanol and 0.1% Triton X-100 for two hours. After centrifugation at 87,000g for 1 hour, the supernatant was subjected to purification through successive column chromatography as follows: i) DEAE-cellulose, ii) Ultrogel (AC-34) filtration, iii) Phenyl-Sepharose, iv) a second DEAE-cellulose. The enzyme activity was assayed using azocasein as substrate. The myelin enzyme was purified 2072-fold and SDS-PAGE analysis of the purified enzyme revealed a major subunit of 72–76 K. The enzyme was inhibited by iodoacetate (1 mM), leupeptin (1 mM), E-64C (1.6 mM), EGTA (1 mM), antipain (2 mM) and endogenous inhibitor calpastatin (2 g). It required 0.8 mM Ca2+ for half-maximal activation and 5 mM Ca2+ for optimal activation. Mg2+ (5 mM) was ineffective while Zn2+ and Hg2+ were inhibitory. The pH optimum was ranged from 7.5–8.5. Treatment of myelin with Triton X-100 increased the enzyme activity by 10-fold suggesting it is membrane bound whereas the purufied enzyme was not activated by Triton X-100 treatment. The presence of CANP in myelin may mediate the turnover of myelin proteins and myelin breakdown in degenerative brain diseases. 相似文献
14.
Neurofilament proteins (NFP) purified from rat spinal cord were labeled with 125-I and incubated with a crude extract from rat spinal cord containing Ca2+-activated protease(s). The protease(s) activated by mM Ca2+ cleaved the NFP and produced a series of breakdown products which were different for each NFP. The amount of cleavage was dependent upon the incubation time with proteases but the pattern remained constant. Some of the cleavage products were relatively stable. These observations suggest that the cleavage products produced by treating NFP subunits with the endogenous protease can be used as a finger print to further study NFP metabolism and to better understand their role in physiological and pathological conditions of the nervous system. 相似文献
15.
Teruhiko Toyo-Oka Teruo Shimizu Tomoh Masaki 《Biochemical and biophysical research communications》1978,82(2):484-491
The calcium activated neutral protease from bovine ventricular muscle requires milli-molar concentration of Ca ions for the activation of the proteolysis of troponin-T, troponin-I and tropomyosin. The exogenous protease inhibitors were examined concerning the blocking action of this enzyme. Both leupeptin and antipain were effective for the inhibition at the nearly same molar concentration as the protease. Lineweaver plot for both the protease alone and protease with leupeptin showed straight lines, and the mode of the inhibition was non-competitive type. Natural actomyosin, pretreated with this protease showed markedly reduced sensitivity to Ca ions. With the addition of leupeptin to the pretreatment, however, the Ca sensitivity was well preserved. 相似文献
16.
Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions 总被引:6,自引:0,他引:6
Ca2+-activated neutral protease (CANP) usually requires mM Ca2+ for activation. The sensitivity of CANP to Ca2+ is greatly enhanced by passing it through a casein-Sepharose column in the presence of Ca2+ ions. This conversion is ascribed to autolysis of CANP. The converted enzyme required 40 microM Ca2+ for 50% activation. Various properties of the converted enzyme were very similar to those of CANP-I, recently found in canine heart muscle. Names of "m-CANP" and "mu-CANP" are proposed for CANPs which require mM and microM order Ca2+ for inactivation, respectively. 相似文献
17.
Calcium-activated neutral protease (CANP), a putative processing enzyme of the neuropeptide, kyotorphin, in the brain 总被引:2,自引:0,他引:2
Y Yoshihara H Ueda S Imajoh H Takagi M Satoh 《Biochemical and biophysical research communications》1988,155(2):546-553
Kyotorphin (Tyr-Arg) accumulation in the dialysed synaptosol from the rat brain in the presence of an inhibitor of kyotorphin-degrading enzyme, was maximal at neutral pH. This accumulation was activated by calcium ions, but was inhibited by leupeptin and SH-blocking agents, a finding which suggests the involvement of calcium-activated neutral protease (CANP or calpain). In addition, the kyotorphin-precursor protein, being processed by purified mu- or m-CANP, was detected at about 160 kDa on Sephacryl S-300 chromatography of the synaptosol. The present findings seem to be the first evidence for the role of CANP as a processing enzyme of neuropeptide-precursor in nerve terminals. 相似文献
18.
19.
Ivanov I Di Venere A Horn T Scheerer P Nicolai E Stehling S Richter C Skrzypczak-Jankun E Mei G Maccarrone M Kühn H 《Biochimica et biophysica acta》2011,1811(12):1001-1010
12/15-Lipoxygenases (12/15-LOXs) have been implicated in inflammatory and hyperproliferative diseases but the structural biology of these enzymes is not well developed. Most LOXs constitute single polypeptide chain proteins that fold into a two-domain structure. In the crystal structure the two domains are tightly associated, but small angle X-ray scattering data and dynamic fluorescence studies suggested a high degree of structural flexibility involving movement of the N-terminal domain relative to catalytic subunit. When we inspected the interdomain interface we have found a limited number of side-chain contacts which are involved in interactions of these two structural subunits. One of such contact points involves tyrosine 98 of N-terminal domain. This aromatic amino acid is invariant in vertebrate LOXs regardless of overall sequence identity. To explore in more detail the role of aromatic interactions in interdomain association we have mutated Y98 to various residues and quantified the structural and functional consequences of these alterations. We have found that loss of an aromatic moiety at position 98 impaired the catalytic activity and membrane binding capacity of the mutant enzymes. Although CD and fluorescence emission spectra of wild-type and mutant enzyme species were indistinguishable, the mutation led to enlargement of the molecular shape of the enzyme as detected by analytic gel filtration and this structural alteration was shown to be associated with a loss of protein thermal stability. The possible role of tight interdomain association for the enzyme's structural performance is discussed. 相似文献
20.
Activation mechanism of calcium-activated neutral protease. Evidence for the existence of intramolecular and intermolecular autolyses 总被引:1,自引:0,他引:1
M Inomata Y Kasai M Nakamura S Kawashima 《The Journal of biological chemistry》1988,263(36):19783-19787
The activation mechanism through limited autolysis of a calcium-activated neutral protease (CANP) with a high sensitivity to calcium ions (microCANP) was analyzed. The rate of autolysis was dependent on microCANP concentration. The reaction was inhibited by high concentrations of digestible substrates but not by a nondigestible substrate. Incubation of microCANP inactivated by N-ethylmaleimide with a small amount of activated microCANP caused the degradation of the former in a manner similar to the autolysis of native microCANP. Immobilized microCANP bound to an anti-microCANP immunoglobulin G column autolyzed on addition of calcium ions. These results show that activation of microCANP through limited autolysis involves both intramolecular and intermolecular reactions. 相似文献