首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sistla RK  K V B  Vishveshwara S 《Proteins》2005,59(3):616-626
We present a novel method for the identification of structural domains and domain interface residues in proteins by graph spectral method. This method converts the three-dimensional structure of the protein into a graph by using atomic coordinates from the PDB file. Domain definitions are obtained by constructing either a protein backbone graph or a protein side-chain graph. The graph is constructed based on the interactions between amino acid residues in the three-dimensional structure of the proteins. The spectral parameters of such a graph contain information regarding the domains and subdomains in the protein structure. This is based on the fact that the interactions among amino acids are higher within a domain than across domains. This is evident in the spectra of the protein backbone and the side-chain graphs, thus differentiating the structural domains from one another. Further, residues that occur at the interface of two domains can also be easily identified from the spectra. This method is simple, elegant, and robust. Moreover, a single numeric computation yields both the domain definitions and the interface residues.  相似文献   

2.
Synaptotagmins are synaptic vesicle-associated, phospholipid-binding proteins most commonly associated with Ca(+2)-dependent exocytotic and Ca(+2)- independent endocytotic events. Synaptotagmin III is a 63.2-kD member of the synaptotagmin homology group; one of its characteristic properties is the ability to bind divalent cations and accessory proteins promiscuously. In the cytosolic portion of this protein, a flexible seven-amino acid linker joins two homologous C2 domains. The C2A domain binds to phospholipid membranes and other accessory proteins in a divalent cation-dependent fashion. The C2B domain promotes binding to other C2B domains, as well as accessory proteins independent of divalent cations. The 3.2 A crystal structure of synaptotagmin III, residues 295-566, which includes the C2A and C2B domains, exhibits differences in the shape of the Ca(+2)-binding pocket, the electrostatic surface potential, and the stoichiometry of bound divalent cations for the two domains. These observations may explain the disparate binding properties of the two domains. The C2A and the C2B domains do not interact; synaptotagmin, therefore, covalently links two independent C2 domains, each with potentially different binding partners. A model of synaptotagmin's involvement in Ca(+2)-dependent regulation of membrane fusion through its interaction with the SNARE complex is presented.  相似文献   

3.
Most eukaryotic proteins consist of multiple domains created through gene fusions or internal duplications. The most frequent change of a domain architecture (DA) is insertion or deletion of a domain at the N or C terminus. Still, the mechanisms underlying the evolution of multidomain proteins are not very well studied.Here, we have studied the evolution of multidomain architectures (MDA), guided by evolutionary information in the form of a phylogenetic tree. Our results show that Pfam domain families and MDAs have been created with comparable rates (0.1-1 per million years (My)). The major changes in DA evolution have occurred in the process of multicellularization and within the metazoan lineage. In contrast, creation of domains seems to have been frequent already in the early evolution. Furthermore, most of the architectures have been created from older domains or architectures, whereas novel domains are mainly found in single-domain proteins. However, a particular group of exon-bordering domains may have contributed to the rapid evolution of novel multidomain proteins in metazoan organisms. Finally, MDAs have evolved predominantly through insertions of domains, whereas domain deletions are less common.In conclusion, the rate of creation of multidomain proteins has accelerated in the metazoan lineage, which may partly be explained by the frequent insertion of exon-bordering domains into new architectures. However, our results indicate that other factors have contributed as well.  相似文献   

4.
Cadherins are cell surface adhesion proteins important for tissue development and integrity. Type I and type II, or classical, cadherins form adhesive dimers via an interface formed through the exchange, or “swapping”, of the N-terminal β-strands from their membrane-distal EC1 domains. Here, we ask which sequence and structural features in EC1 domains are responsible for β-strand swapping and whether members of other cadherin families form similar strand-swapped binding interfaces. We created a comprehensive database of multiple alignments of each type of cadherin domain. We used the known three-dimensional structures of classical cadherins to identify conserved positions in multiple sequence alignments that appear to be crucial determinants of the cadherin domain structure. We identified features that are unique to EC1 domains. On the basis of our analysis, we conclude that all cadherin domains have very similar overall folds but, with the exception of classical and desmosomal cadherin EC1 domains, most of them do not appear to bind through a strand-swapping mechanism. Thus, non-classical cadherins that function in adhesion are likely to use different protein-protein interaction interfaces. Our results have implications for the evolution of molecular mechanisms of cadherin-mediated adhesion in vertebrates.  相似文献   

5.
The PAAD/DAPIN/pyrin domain is the fourth member of the death domain superfamily, but unlike other members of this family, it is involved not only in apoptosis but also in innate immunity and several other processes. We have identified 40 PAAD domain-containing proteins by extensively searching the genomes of higher eukaryotes and viruses. Phylogenetic analyses suggest that there are five categories of PAAD domains that correlate with the domain architecture of the entire proteins. Homology models built on CARD and DD structures identified functionally important residues by studying conservation patterns on the surface of the models. Surface maps of each subfamily show different distributions of these residues, suggesting that domains from different subfamilies do not interact with each other, forming independent regulatory networks. Helix3 of PAAD is predicted to be critical for dimerization. Multiple alignment analysis and modeling suggest that it may be partly disordered, following a new paradigm for interaction proteins that are stabilized by protein-protein interactions.  相似文献   

6.
Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein–protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.  相似文献   

7.
Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.  相似文献   

8.
Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not “completely” rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.  相似文献   

9.
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.  相似文献   

10.
Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.  相似文献   

11.
12.
Most Cys2His2 zinc finger proteins contain tandem arrays of metal binding domains. The tandem nature of these arrays suggests that metal binding by these domains may not be independent but rather that metal binding may occur in a cooperative manner. This is especially true in light of the crystal structure of a three zinc finger array bound to DNA that revealed several types of interactions between domains. To address this question, peptides containing two tandem domains have been prepared. While metal binding studies do show that the two finger peptide has a metal ion affinity about threefold higher than that for a single domain peptide with the same sequence, additional studies reveal that this behavior is due to increased single site affinities in the context of the two domain peptide rather than to cooperativity. These studies indicate that domains of this type are independent of one another with regard to metal binding, at least in the absence of DNA. This observation has implications with regard to the question of whether the activities of proteins of this class might be modulated by available zinc concentrations.  相似文献   

13.
The human gene parkin, known to cause familial Parkinson disease, as well as several other genes, likely involved in other neurodegenerative diseases or in cancer, encode proteins of the RBR family of ubiquitin ligases. Here, we describe the structural diversity of the RBR family in order to infer their functional roles. Of particular interest is a relationship detected between RBR-mediated ubiquitination and RNA metabolism: a few RBR proteins contain RNA binding domains and DEAH-box RNA helicase domains. Global protein domain graph analyses demonstrate that this connection is not RBR-specific, but instead many other proteins contain both ubiquitination and RNA-related domains. These proteins are present in animals, plants and fungi, suggesting that the link between these two cellular processes is ancient. Our results show that global bioinformatic approaches, involving comparative genomics and domain network analyses, may unearth novel functional relationships involving well-known and thoroughly studied groups of proteins.  相似文献   

14.
Protein domains exist by themselves or in combination with other domains to form complex multidomain proteins. Defining domain boundaries in proteins is essential for understanding their evolution and function but is not trivial. More specifically, partitioning domains that interact by forming a single β-sheet is known to be particularly troublesome for automatic structure-based domain decomposition pipelines. Here, we study edge-to-edge β-strand interactions between domains in a protein chain, to help define the boundaries for some more difficult cases where a single β-sheet spanning over two domains gives an appearance of one. We give a number of examples where β-strands belonging to a single β-sheet do not belong to a single domain and highlight the difficulties of automatic domain parsers on these examples. This work can be used as a baseline for defining domain boundaries in homologous proteins or proteins with similar domain interactions in the future.  相似文献   

15.
16.
Bacteriophage T4 gene 32 protein, a model for single-strand specific nucleic acid-binding proteins, consists of three structurally and functionally distinct domains. We have studied the effects of the N and C domains on the protein structure and its nucleic acid-interactive properties. Although the presence of the C domain decreases the proteolytic susceptibility of the core (central) domain, quenching of the core tryptophan fluorescence by iodide is unaltered by the presence of the terminal domains. These results suggest that the overall conformation of the core domain remains largely independent of the flanking domains. Removal of the N or the C terminus does not abolish the DNA renaturation activity of the protein. However, intact protein and its three truncated forms differ in DNA helix-destabilizing activity. The C domain alone is responsible for the kinetic barrier to natural DNA helix destabilization seen with intact protein. Intact protein and core domain potentiate the DNA helix-destabilizing activity of truncated protein lacking only the C domain (*I), enhancing the observed hyperchromicity while increasing the melting temperature. Proteolysis experiments suggest that the affinity of core domain for single-stranded DNA is increased in the presence of *I. We propose that *I can "mingle" with intact protein or core domain while bound to single-stranded DNA.  相似文献   

17.
The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.  相似文献   

18.
Pleckstrin homology (PH) domains are membrane tethering devices found in many signal transducing proteins. These domains also couple to the betagamma subunits of GTP binding proteins (G proteins), but whether this association transmits allosteric information to the catalytic core is unclear. To address this question, we constructed protein chimeras in which the PH domain of phospholipase C-beta(2) (PLC-beta(2)), which is regulated by Gbetagamma, replaces the PH domain of PLC-delta(1) which binds to, but is not regulated by, Gbetagamma. We found that attachment of the PH domain of PLC-beta(2) onto PLC-delta(1) not only causes the membrane-binding properties of PLC-delta(1) to become similar to those of PLC-beta(2), but also results in a Gbetagamma-regulated enzyme. Thus, PH domains are more than simple tethering devices and mediate regulatory signals to the host protein.  相似文献   

19.
Multidomain proteins account for over two-thirds of the eukaryotic genome. Although there have been extensive studies into the biophysical properties of isolated domains, few have investigated how the domains interact. Spectrin is a well-characterized multidomain protein with domains linked in tandem array by contiguous helices. Several of these domains have been shown to be stabilized by their neighbors. Until now, this stabilization has been attributed to specific interactions between the natural neighbors, however we have recently observed that nonnatural neighboring domains can also induce a significant amount of stabilization. Here we investigate this nonnative stabilizing effect. We created spectrin-titin domain pairs of both spectrin R16 and R17 with a single titin I27 domain at either the N- or the C-terminus and found that spectrin domains are significantly stabilized, through slowed unfolding, by nonnative interactions at the C-terminus only. Of particular importance, we show that specific interactions between natural folded neighbors at either terminus confer even greater stability by additionally increasing the folding rate constants. We demonstrate that it is possible to distinguish between natural stabilizing interactions and nonspecific stabilizing effects through examination of the kinetics of well chosen mutant proteins. This work adds to the complexity of studying multidomain proteins.  相似文献   

20.
A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: “free”, “open-closed”, “anchored”, “sliding-twist”, and “see-saw.” A directed graph is introduced called the “Dynamic Contact Graph” which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号