首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During normal development and following a variety of experimental manipulations (e.g., neural tube rotations, limb shifts), sensory neurons in the chick grow to their correct targets. L. Landmesser and M. G. Honig (1986, Dev. Biol. 118, 511-531) have suggested that sensory innervation may be precise, not because sensory neurons respond to limb-derived guidance cues, but because sensory neurons interact with motoneurons, which do respond to such cues. To test this hypothesis for skin sensory neurons, the ventral neural tube, including the motoneuron precursors, was removed from chick embryos prior to sensory axon outgrowth and the resulting patterns of dermatomes and axonal projections were mapped physiologically and anatomically. As reported previously, dorsal root ganglia (DRGs) and cutaneous nerves formed in their usual locations following the early removal of motoneurons, while most muscle nerves and the plexus region were reduced substantially (A. C. Taylor, 1944, J. Exp. Zool. 96, 159-185; L. Landmesser and M. G. Honig, 1986, Dev. Biol. 118, 511-531; G. J. Swanson and J. Lewis, 1986, J. Embryol. Exp. Morphol. 95, 37-52). The patterns of axonal projections and dermatomes were surprisingly, although not entirely, normal. In particular, cutaneous nerves in motoneuron-depleted embryos were derived from the same DRGs in approximately the same proportions as normal. Thus, while motoneurons may play a facilitative role in the development of the segmental pattern of skin sensory innervation, they do not appear to be essential.  相似文献   

2.
Previous studies suggest that sensory axon outgrowth is guided by motoneurons, which are specified to innervate particular target muscles. Here we present evidence that questions this conclusion. We have used a new approach to assess the pathfinding abilities of bona fide sensory neurons, first by eliminating motoneurons after neural crest cells have coalesced into dorsal root ganglia (DRG) and second by challenging sensory neurons to innervate muscles in a novel environment created by shifting a limb bud rostrally. The resulting sensory innervation patterns mapped with the lipophilic dyes DiI and DiA showed that sensory axons projected robustly to muscles in the absence of motoneurons, if motoneurons were eliminated after DRG formation. Moreover, sensory neurons projected appropriately to their usual target muscles under these conditions. In contrast, following limb shifts, muscle sensory innervation was often derived from inappropriate segments. In this novel environment, sensory neurons tended to make more "mistakes" than motoneurons. Whereas motoneurons tended to innervate their embryologically correct muscles, sensory innervation was more widespread and was generally from more rostral segments than normal. Similar results were obtained when motoneurons were eliminated in embryos with limb shifts. These findings show that sensory neurons are capable of navigating through their usual terrain without guidance from motor axons. However, unlike motor axons, sensory axons do not appear to actively seek out appropriate target muscles when confronted with a novel terrain. These findings suggest that sensory neuron identity with regard to pathway and target choice may be unspecified or quite plastic at the time of initial axon outgrowth.  相似文献   

3.
In the chick, sensory neurons grow to their segmentally appropriate target sites in the hindlimb from the outset during normal development. To elucidate the underlying mechanisms, we performed various manipulations of the neural tube, including the neural crest, or of the hindlimb, before axonal outgrowth and assessed the resulting sensory projections using retrograde and anterograde HRP labeling and electrophysiological techniques. Previous experiments had shown that motoneurons are specified to project to their appropriate target muscles prior to axon outgrowth and that they respond to cues in the limb in order to grow to those targets (C. Lance-Jones and L. Landmesser, 1980, J. Physiol. (London) 302, 559-602; C. Lance-Jones and L. Landmesser, 1981, Proc. R. Soc. London, B 214, 19-52). When several segments of neural tube and neural crest were deleted, sensory neurons in the remaining segments still projected along their correct pathways, as did motoneurons. In situations in which motoneurons grew to their correct targets from altered positions with respect to the limb (e.g., small neural tube reversals), sensory neurons also tended to project along the segmentally appropriate pathways both to skin and to muscle. In situations in which motoneurons were displaced greater distances from their normal point of entry into the limb and made wrong connections (e.g., large neural tube reversals, anterior-posterior limb reversals), sensory neurons also projected incorrectly. The patterns of sensory projections to muscles were, in each situation, generally similar to the motoneuron projections. These results are consistent with the possibility that sensory neurons, like motoneurons, are specified with respect to their peripheral connectivity. Alternatively, the results suggest that motoneurons may play a role in the process of pathway selection by sensory neurons.  相似文献   

4.
Isolated Na currents were studied in cultured chick sensory neurons using the patch clamp technique. On membrane depolarization, whole cell currents showed the typical transient and voltage-dependent time course as in nerve fibres. Na currents appeared at about-40 mV and reached maximum amplitude at around-10 mV. At low voltages (-30 to 0 mV), their turning-on was sigmoidal and inactivation developed exponentially. The ratio of inactivation time constants was found to be smaller than in squid axons and comparable to that of mammalian nodes of Ranvier. Peak conductance and steady-state inactivation were strongly voltage-dependent, with maximum slopes at-17 and-40 mV, respectively. The reversal potential was close to the Nernst equilibrium potential, indicating a high degree of ion-selectivity for the channel. Addition of 3M TTX, or replacement of Na by Choline in the external bath, abolished these currents. Internal pronase (1 mg/ml) and N-bromoacetamide (0.4 mM) made inactivation incomplete, with little effect on its rate of decay.Single Na channel currents were studied in outside-out membrane patches, at potentials between-50 and-20 mV. Their activation required large negative holding potentials (-90 mV). They were fully blocked by addition of TTX (3 M) to the external bath. At-40 mV their mean open time was about 2ms and the amplitude distribution could be fitted by a single Gaussian curve, indicating the presence of a homogeneous population of channels with a conductance of 11±2 pS. Probability of opening increased and latency to first opening decreased with increasing depolarization. Inactivation of the channel became faster with stronger depolarizations, as measured from the inactivation time course of sample averages. Internal pronase (0.1 mg/ml) produced effects on inactivation comparable to those on whole cell currents. Openings of the channel had a tendency to occur in bursts and showed little inactivation during pulses of 250 ms duration. The open lifetime of the channel at low potentials (-50,-40 mV) was only three times larger than in control patches, suggesting that Na channels in chick sensory neurons can close several times before entering an inactivating absorbing state.  相似文献   

5.
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.  相似文献   

6.
7.
8.
The aim of this study was to assess the effects of low concentrations of okadaic acid (OA) on neurite outgrowth and cellular integrity in cultures of dissociated dorsal root ganglion (DRG) neurons. The complete and fully reversible arrest of neurite outgrowth was achieved at 1 nM OA, thus ruling out the involvement of protein phosphatase 1 in the observed inhibitory effect. OA at 0.5 nM did not completely block neurite outgrowth, although it reduced the rate of growth by about one third. Protein phosphorylation and the integrity of microtubules and neurofilaments in neuron-enriched cultures were unaffected by 1 nM OA. The rate of synthesis of the low-molecular-weight neurofilament subunit (NFL) was also unchanged by OA treatment. Antimitotic agents used to eliminate proliferating cells did not alter the rate of neurite elongation. Since 1 nM OA does not suffice to inhibit neuronal protein phosphatase 2A fully, owing to the high concentration of this enzyme in neurons, we propose that the inhibitor is affecting a neuronal compartment that contains low levels of the phosphatase. This putative compartment is likely to be located in neurites, which were shown to contain levels of protein phosphatase 2A that were two- to threefold lower than in neuronal perikarya. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 193–201, 1997.  相似文献   

9.
10.
11.
12.
13.
14.
Tong  J. X  Vogelbaum  M. A  Drzymala  R. E  Rich  K. M 《Brain Cell Biology》1997,26(11):771-777
Ionizing radiation (IR) results in apoptosis in a number of actively proliferating or immature cell types. The effect of IR on rat dorsal root ganglion (DRG) neurons was examined in dissociated cell cultures. After exposure to IR, embryonic DRG neurons, established in cell culture for six days, underwent cell death in a manner that was dose-dependent, requiring a minimum of 8 to 16 Gy. Twenty-five per cent cell loss occurred in embryonic day 15 (E-15) neurons, grown in cell culture for 6 days (“immature”), and then treated with 24 Gy IR. In contrast, only 2% cell loss occurred in E-15 neurons maintained in culture for 21 days ("mature") and then treated with 24 Gy IR. Staining with a fluorescent DNA-binding dye demonstrated clumping of the nuclear chromatin typical of apoptosis. Initiation of the apoptosis occurred within 24 h after exposure to IR. Apoptosis was prevented by inhibition of protein synthesis with cycloheximide. Apoptosis induced by IR occurred more frequently in immature than in mature neurons. Immature DRG neurons have a lower concentration of intracellular calcium ([Ca2+]i) than mature neurons. Elevation of [Ca2+]i by exposure to a high extracellular potassium ion concentration (35 μM) depolarizes the cell membrane with a resultant influx of calcium ions. The activation of programmed cell death after nerve growth factor (NGF) withdrawal is inversely correlated with [Ca2+]i in immature DRG neurons. When treated with high extracellular potassium, these immature neurons were resistant to IR exposure in a manner similar to that observed in mature neurons. These data suggest that [Ca2+]i modulates the apoptotic response of neurons after exposure to IR in a similar manner to that proposed by the “Ca2+ setpoint hypothesis” for control of NGF withdrawal-induced apoptosis.  相似文献   

15.
16.
藜芦碱和乌头碱在受损背根节神经元诱发不同的放电模式   总被引:4,自引:0,他引:4  
Duan JH  Xing JL  Yang J  Hu SJ 《生理学报》2005,57(2):169-174
为了研究钠通道失活门阻断后受损背根节神经元放电模式的变化特征,在大鼠背根节慢性压迫模型上采用单纤维技术记录A类神经元的自发放电。藜芦碱和乌头碱是钠通道失活门的抑制剂,但二者作用于不同的位点,前者结合于D2-S6,后者结合于D3-S6。我们比较了这两种试剂引发的放电模式。结果发现,在同一神经元,藜芦碱(1.5~5.0μmol/L)可以引起放电峰峰间期的慢波振荡,即峰峰间期由大逐渐减小,然后又逐渐增大,形成重复的振荡波形,每个振荡持续约数十秒至数分钟:而乌头碱(10~200μmol/L)则引起强直性放电,即峰峰间期逐渐减小,然后维持在一个稳定的水平。这两种不同的放电模式不因背景放电或试剂浓度的不同而发生明显的改变。实验结果表明,藜芦碱和乌头碱在受损的背根节神经元可以引发不同的放电模式,这可能与它们结合于钠通道上不同位点的抑制作用有关。  相似文献   

17.
The level and characteristics of 3'-5'-cyclic nucleotide phosphodiesterase (PDE) activity in chick dorsal root ganglion (DRG) extracts of 5-day posthatching chicken (P5) and E10 and E18 embryos were studied. At all stages, PDE activity is stimulated by calcium and calmodulin. A 5-fold increase in basal cAMP and cGMP PDE activity is evident from E10 to E18, while from E18 to P5 basal PDE activity remains constant. Ion exchange chromatography elution profile indicates that PDE1 isoforms represent the bulk of the PDE activity present. Inhibition studies were performed in order to distinguish the activity due to PDE1A, B and C. Western blot analysis using anti-mammalian PDE1A, B and C specific antibodies was also performed. Densitometric analysis of the stained bands reveals that PDE1B and PDE1C display a prominent increase between day 10 and day 18 of development (eight- and 3.6 fold, respectively) while a more limited increase (1.6- and 1.5-fold) is observed between E18 and P5; on the other hand PDE1A shows continuously increasing levels throughout development. Immunohistochemical analysis was performed with isoform specific antibodies used for western blot analysis. PDE1A immunoreactivity is found in the cytoplasm and fibers of several neurons differing in size and distributed throughout the ganglion. PDE1B staining is evident on all neurons, however, fibers appear very faintly labelled. All neurons appear stained by PDE1C antibody, although the intensity of immunostaining is always heterogeneous in different neuronal populations: no staining was evident on fibers or in non-neural cells. The distinct spatial and temporal expression patterns of PDE1 isoforms may indicate their different physiological roles in developing and mature chick DRG.  相似文献   

18.
Although the formation of motoneuron projections to individual muscles in the embryonic chick hindlimb has been shown to involve the specific recognition of environmental cues, the source of these cues and their mode of acquisition are not known. I show in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 394-407) that there is a correlation between the segmental level of origin of motoneurons and the somitic level of origin of the muscle cells of their targets in the chick hindlimb. These data are compatible with the hypothesis that the developmental basis for specific recognition is a positional one. Motoneurons and myogenic cells may be uniquely labeled in accord with their axial level of origin early in development and subsequently matched on the basis of these labels. To test this hypothesis, I have assessed motoneuron projection patterns in the embryonic chick hindlimb after somitic tissue manipulations. In one series of embryos, somitic mesoderm at levels 26-29 or 27-29 was reversed about the anteroposterior axis prior to myogenic cell migration and axon outgrowth. Since previous studies have shown that cells migrate from the somites in accord with their position and that somites 26-29 populate anterior thigh musculature, this operation will have reversed the somitic level of origin of anterior thigh muscles. Retrograde HRP labeling of projections to anterior thigh muscles at stage (st) 30 and st 35-38 showed that motoneuron projections were largely normal. This finding suggests that limb muscle cells or their source, the somites, do not contain the cues responsible for specific recognition prior to myogenic cell migration and axon outgrowth. To confirm that specific guidance cues were still intact after somitic mesoderm reversal, I also assessed motoneuron projections in embryos where somitic tissue plus adjacent spinal cord segments at levels 26-29 were reversed in a similar manner. Analyses of the distribution of retrogradely labeled motoneurons in reversed cord segments at st 35-36 indicated that motoneuron projections were reversed. This finding suggests that motoneurons have altered their course to project to correct targets despite the altered somitic origin of their targets and, thus, that specific guidance cues were intact. I conclude that if cues governing target or pathway choice are encoded positionally then they must be associated with other embryonic tissues such as the connective tissues or that guidance cues are acquired by myogenic cells after the onset of migration and motoneuron specification.  相似文献   

19.
During the normal development of the chick, lateral motoneurons within the lumbosacral motor column of the spinal cord consistently project to muscles of dorsal origin within the limb while medial motoneurons project to muscles of ventral origin. To determine if specific cues arising from each type of target are the dominant guidance cues used by lateral and medial motoneurons to create this pattern, I examined motoneuron projections in embryonic chick limbs with a double complement of dorsal thigh musculature and no ventral musculature. Results indicate that cues associated with muscles of a specific developmental origin do not invariably dominate. Before and after the major period of motoneuron death, all muscles in dorsal limb regions (host) were innervated by lateral or dorsal pool neurons. Most ventrally positioned (donor) muscles were innervated by medial or ventral pool neurons. Only the donor iliofibularis, a muscle located very near to its original source of innervation, received projections from some lateral neurons. Within the limb proper, medial or ventral pool neurons projected to donor muscles in a patterned manner suggesting that they were following nonspecific regional cues and perhaps also responding to the availability of uninnervated target tissue. I conclude that axon sorting into distinct lateral and medial classes is independent of limb target complement and that subsequent pathway choice is a separate event governed by both specific target cues and other guidance mechanisms.  相似文献   

20.
Tandrup  T.  Jakobsen  J. 《Brain Cell Biology》2002,31(1):79-87
We have examined the effects of acrylamide on primary sensory nerve cell bodies and their myelinated axons in chronic acrylamide intoxication. The numbers and sizes of dorsal root ganglion cell bodies (L5) and myelinated nerve fibers were estimated with sterelogical techniques in severely disabled rats which had been treated with 33.3 mg/kg acrylamide twice a week for 7.5 weeks. There was no loss of dorsal root ganglion cells or myelinated nerve fibers in the roots, the sciatic nerve, sural nerve, and a tibial nerve branch. The mean perikaryal volume of A-cells was reduced by 20% (2P < 0.001) from 50000 μm3 in controls (CV = 0.13) to 40000 μm3 (0.12), whereas B-cell volume was unchanged. All size-frequency distribution curves of myelinated axon area of peripheral nerves and sensory roots were shifted to the left towards smaller values in rats exposed to acrylamide. In the L5 sensory root 3 mm from the ganglion, there was a significant reduction of mean cross sectional area of myelinated axons by 14% (2P < 0.05) from 7.6 μm2 (0.11) in controls to 6.5 μm2 (0.13) in intoxicated rats. The mean cross sectional area of myelinated sural nerve axons was reduced by 22% (2P < 0.001) from 8.6 μm2 (0.08) in controls to 6.7 μm2 (0.17) in intoxicated rats. We conclude that chronic intoxication with acrylamide leads to selective atrophy of type A dorsal root ganglion cell bodies and simultaneous atrophy along their peripheral axons, whereas neuronal B-cell bodies and motor axons are spared. It is suggested that the neuronal atrophy might well represent a defect of neurofilament synthesis and transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号