首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We used a simian virus 40-based shuttle vector plasmid, pZ189, to determine the role of pyrimidine cyclobutane dimers in UV light-induced mutagenesis in monkey cells. The vector DNA was UV irradiated and then introduced into monkey cells by transfection. After replication, vector DNA was recovered from the cells and tested for mutations in its supF suppressor tRNA marker gene by transformation of Escherichia coli carrying a nonsense mutation in the beta-galactosidase gene. When the irradiated vector was treated with E. coli photolyase prior to transfection, pyrimidine cyclobutane dimers were removed selectively. Removal of approximately 90% of the pyrimidine cyclobutane dimers increased the biological activity of the vector by 75% and reduced its mutation frequency by 80%. Sequence analysis of 72 mutants recovered indicated that there were significantly fewer tandem double-base changes and G X C----A X T transitions (particularly at CC sites) after photoreactivation of the DNA. UV-induced photoproducts remained (although at greatly reduced levels) at all pyr-pyr sites after photoreactivation, but there was a relative increase in photoproducts at CC and TC sites and a relative decrease at TT and CT sites, presumably due to a persistence of (6-4) photoproducts at some CC and TC sites. These observations are consistent with the fact that mutations were found after photoreactivation at many sites at which only cyclobutane dimers would be expected to occur. From these results we conclude that UV-induced pyrimidine cyclobutane dimers are mutagenic in DNA replicated in monkey cells.  相似文献   

2.
3.
Sunlight is carcinogenic and mutagenic and its genotoxic effects are believed to be the result of UV light-induced lesions in DNA. These lesions include pyrimidine dimers and (6-4) photoproducts, but it is uncertain whether the pyrimidine modifications are the sole pre-mutagenic lesions induced by UV light. Previous studies indicate that some sunlight-induced mutations in the single-stranded DNA phage M13mp2 may not be caused by these photoproducts. In this work, purified single-stranded phage DNA was exposed to UVA, UVB and UVC and the induced mutations were analyzed. All 3 types of UV light increase the mutation frequency. The mutants were sequenced and the results suggest that UVA exposure may induce formation of a non-dipyrimidine lesion in DNA.  相似文献   

4.
The effect of purified Escherichia coli DNA photolyase on the UV light-induced pyrimidine-pyrimidone (6-4) photoproduct and cyclobutane pyrimidine dimer was investigated in vitro using enzyme purified from cells carrying the cloned phr gene (map position, 15.7 min). Photoproducts were examined both as site-specific lesions in end-labeled DNA and as chromatographically identified products in uniformly labeled DNA. E. coli DNA photolyase removed cyclobutane dimers but had no activity on pyrimidine-pyrimidone (6-4) photoproducts. Photoreactivation can therefore be used to separate the biological effects of these two UV light-induced molecular lesions.  相似文献   

5.
Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are the two main classes of mutagenic DNA damages induced by UVB radiation. Numerous studies have been devoted so far to their formation and repair in human cells and skin. However, the biochemical methods used often lack the specificity that would allow the individual study of each of the four CPDs and 6-4PPs produced at TT, TC, CT and CC dinucleotides. In the present work, we applied an HPLC-mass spectrometry assay to study the formation and repair of CPDs and 6-4PPs photoproducts in primary cultures of human keratinocytes and fibroblasts as well as in whole human skin. We first observed that the yield of dimeric lesions was slightly higher in fibroblasts than in keratinocytes. In contrast, the rate of global repair was higher in the last cell type. Moreover, removal of DNA photoproducts in skin biopsies was found to be slower than in both cultured skin cells. In agreement with previous works, the repair of 6-4PPs was found to be more efficient than that of CPDs in the three types of samples, with no observed difference between the removal of the TT and TC derivatives. In contrast, a significant influence of the nature of the two modified pyrimidines was observed on the repair rate of CPDs. The decreasing order of removal efficiency was the following: C<>T>C<>C>T<>C>T<>T. These data, together with the known intrinsic mutational properties of the lesions, would support the reported UV mutation spectra. A noticeable exception concerns CC dinucleotides that are mutational hotspots with an UV-specific CC to TT tandem mutation, although related bipyrimidine photoproducts are produced in low yields and efficiently repaired.  相似文献   

6.
Available evidence rules out the possibility that cyclobutane dimers are the major premutagenic lesions responsible for point mutations at sites of adjacent pyrimidine residues in the experiment systems examined to date in sufficient detail, that is, UV-induced mutations in chromosome loci in E. coli and UV-induced mutations in the cI gene of phage lambda. However, it is likely that the major cytotoxic effects of UV irradiation can be attributed to the cyclobutane pyrimidine dimer, as these lesions occur at 10 times the frequency of other UV-induced photoproducts in the dose range of 0.1-100 J/m2. The evidence also suggests that cyclobutane pyrimidine dimers are the major lesions responsible for induction of the SOS response and that as such they play an important, though indirect role, in the formation of mutations in irradiated DNA. Cyclobutane dimers may also be the major lesions responsible for other types of UV-light-induced mutations such as deletions. None of the available evidence rules out (6-4) photoproducts as a major premutagenic lesion induced by UV irradiation using these experimental systems. On the contrary, the mutation spectrum induced both in the lacI gene and the cI gene of phage lambda is that predicted for mutations induced by (6-4) photoproducts. The observation that neither the premutagenic lesions nor the (6-4) photoproduct is subject to enzymatic photoreactivation also implies that the (6-4) photoproducts are premutagenic. As reviewed above, neither the photosensitization experiments nor the action spectrum of the (6-4) photoproducts rules out such a role. Might a lesion other than the (6-4) photoproduct be the major premutagenic lesion responsible for point mutations in these experimental systems? It cannot be ruled out that another as yet undefined minor photoproduct that occurs with the same sequence distribution specificity as that of the (6-4) photoproduct and that is also not subject to the reactivating treatments is more mutagenic than the (6-4) photoproduct itself. Candidates for such a lesion might include a photohydrate of the (6-4) photoproduct itself or as yet undefined photoproducts. However, we believe these alternative possibilities to be remote.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S(4)TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S(4)TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S(4)TdR in dilute solution, more complex lesions are formed when S(4)TdR-containing oligonucleotides are irradiated. One of these, a thietane/S(5)-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S(4)TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S(4)TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S(4)TdR/UVA indicating that these lesions contribute significantly to S(4)TdR/UVA cytotoxicity.  相似文献   

8.
We have studied mutagenic specificities of DNA lesions in vivo in yeast CYC1 oligonucleotide transformation assay. We introduced two lesions into oligonucleotides. One was a nucleoside analog, 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 2'-deoxyriboside (dP), which is highly mutagenic to bacteria. It is supposed to be a miscoding, but otherwise good template for DNA polymerases. The other lesion was the TT pyrimidine(6-4)pyrimidone photoproduct, one of the typical UV lesions, which blocks DNA replication. These oligonucleotides were used to transform yeast cyc1 mutants with ochre nonsense mutation to Cyc1+. As expected from its templating properties in vitro, the transforming activity of dP-containing oligonucleotides was similar to those of unmodified oligonucleotides. Results indicated that dP may direct incorporation of guanine and adenine at a ratio of 1:20 or more in vivo. An oligonucleotide containing the photoproduct showed the transforming activity of as low as 3-5% of that of the corresponding unmodified oligonucleotide. This bypass absolutely required REV1 gene. The sequence analysis of the transformants has shown that the lesion was read as TT and TC at a ratio of 3:7, indicating its high mutagenic potential.  相似文献   

9.
Summary The role of pyrimidine dimers in mutagenesis by ultraviolet light was examined by measuring the UV-induced reversion of six different bacteriophage M13 amber mutants for which the neighboring DNA sequences are known. The mutational response at amber (TAG) codons preceded by a guanine or adenine (where no pyrimidine dimer can be formed) were compared with those preceded by thymine or cytosine (where dimer formation is possible). Equivalent levels of UV-induced mutagenesis were observed at both kinds of sites. This observation demonstrates that there is no requirement for a pyrimidine dimer directly at the site of UV-induced mutation in this single-stranded DNA phage. UV irradiation of the phage was also performed in the presence of Ag+ ions, which specifically sensitize the DNA to dimer formation. The two methods of irradiation, when compared at equal survival levels (and presumably equal dimer frequencies), produced equivalent frequencies of reversion of the amber phage. We believe these results indicate that while the presence of pyrimidine dimers may be a prerequisite for UV mutagenesis, the actual mutagenic event can occur at a site some distance removed from a dimer.  相似文献   

10.
The mutagenic effects of ultraviolet and solar irradiation are thought to be due to the formation of DNA photoproducts, most notably cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). Experimental systems for determining the levels and sequence dependence of photoproduct formation in DNA have often used high doses of short-wave (UVC) irradiation. We have re-assessed this issue by using DNA sequencing technologies and different doses of UVC as well as more physiologically relevant doses of solar irradiation emitted from a solar UV simulator. It has been questioned whether hot alkali treatment can detect (6-4)PPs at all sequence positions. With high UVC doses, the sequence distribution of (6-4)PPs was virtually identical when hot alkali or UV damage endonuclease (UVDE) were used for detection, which appears to validate both methods. The (6-4)PPs form at 5'-TpC and 5'CpC sequences but very low levels are seen at all other dipyrimidines including 5'-TpT. Contrary to expectation, we find that (6-4) photoproducts form at almost undetectable levels under conditions of irradiation for up to five hours with the solar UV simulator. The same treatment produces high levels of CPDs. In addition, DNA glycosylases, which recognize oxidized and ring-opened bases, did not produce significant cleavage of sunlight-irradiated DNA. From these data, we conclude that cyclobutane pyrimidine dimers are at least 20 to 40 times more frequent than any other DNA photoproduct when DNA or cells are irradiated with simulated sunlight.  相似文献   

11.
Douki T  Cadet J 《Biochemistry》2001,40(8):2495-2501
Bipyrimidine photoproducts induced in DNA by UVB radiation include cyclobutane dimers, (6-4) photoproducts, and their related Dewar valence isomers. Even though these lesions have been extensively studied, their rate of formation within DNA is still not known for each possible bipyrimidine site (TT, TC, CT, and CC). Using a method based on the coupling of liquid chromatography to mass spectrometry, we determined the distribution of the 12 possible bipyrimidine photoproducts within isolated and cellular DNA. TT and TC were found to be the most photoreactive sequences, whereas lower amounts of damage were produced at CT and CC sites. In addition to this quantitative aspect, sequence effects were observed on the relative yield of (6-4) adducts with respect to cyclobutane pyrimidine dimers. Another interesting result is the lack of formation of Dewar valence isomers in detectable amounts within the DNA of cells exposed to low doses of UVB radiation. The photoproduct distribution obtained does not fully correlate with the UV mutation spectrum. A major striking observation deals with the low yield of cytosine-cytosine photoproducts which are likely to be associated with the UV-specific CC to TT tandem mutation.  相似文献   

12.
In vivo formation and repair of the major UV-induced DNA photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4 PPs), have been examined at the gene and nucleotide level in Escherichia coli. Each type of DNA photoproduct has individually been studied using photoreactivation and two newly developed assays; the multiplex QPCR assay for damage detection at the gene level and the reiterative primer extension (PE) assay for damage detection at the nucleotide level. In the E. coli lacI and lacZ genes, CPDs and 6-4 PPs form in a 2:1 ratio, respectively, during UV irradiation. Repair of 6-4 PPs is more efficient than repair of CPDs since, on the average, 42% of 6-4 PPs are repaired in both genes in the first 40 min following 200 J/m2 UV irradiation, while 1% of CPDs are repaired. The location, relative frequency of formation, and efficiency of repair of each type of photoproduct was examined in the first 52 codons of the E. coli lacI gene at the nucleotide level. Hotspots of formation were found for each type of lesion. Most photoproducts are at sites where both CPDs and 6-4 PPs are formed. Allowing 40 min of recovery following 200 J/m2 shows that in vivo repair of 6-4 PPs is about fourfold more efficient than the repair of CPDs. Comparison of the lesion-specific photoproduct distribution of the lacI gene with a UV-induced mutation spectrum from wild-type cells shows that most mutational hotspots are correlated with sites of a majority of CPD formation. However, 6-4 PPs are also formed at some of these sites with relatively high frequency. This information, taken together with the observation that 6-4 PPs are repaired faster than CPDs, suggest that the cause of mutagenic hotspots in wild-type E. coli is inefficient repair of CPDs.  相似文献   

13.
A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

14.
We have determined the UV (254 nm) damage distribution in the transcribed and non-transcribed strands of the i-d region of the Escherichia coli lacI gene. The locations of replication blocking lesions were revealed as termination sites of T7 DNA polymerase and/or T4 DNA polymerase 3'-5' exonuclease. Termination products, i.e. both cyclobutane pyrimidine dimers and 6-4 photoproducts, were resolved and analysed on an automated DNA sequencer. These two major photoproducts are not randomly distributed along the gene, but occur in clusters, in longer runs of pyrimidines. We also have compared the UV damage distribution with the previously reported UV-induced base substitutions in the same region. Mutational hotspots, in both repair-deficient and repair-proficient strains of E. coli, are all located in stretches of pyrimidines, and thus correlate well with the distribution of photolesions. One mutational hotspot in the wild-type strain may reflect the high frequency of closely opposed lesions. To explain the other mutational hotspots, we propose that the repair of UV lesions is impaired due to the local conformation of the DNA, which might deviate from the B-form. This hypothesis is supported by the excess of mutational hotspots in pyrimidine runs in the Uvr+ strain compared to Uvr-. Runs of pyrimidines thus represent both damage- and mutation-prone sequences following UV treatment.  相似文献   

15.
16.
Photoreactivation is one of the DNA repair mechanisms to remove UV lesions from cellular DNA with a function of the DNA photolyase and visible light. Two types of photolyase specific for cyclobutane pyrimidine dimers (CPD) and for pyrimidine (6-4) pyrimidones (6-4PD) are found in nature, but neither is present in cells from placental mammals. To investigate the effect of the CPD-specific photolyase on killing and mutations induced by UV, we expressed a marsupial DNA photolyase in DNA repair-deficient group A xeroderma pigmentosum (XP-A) cells. Expression of the photolyase and visible light irradiation removed CPD from cellular DNA and elevated survival of the UV-irradiated XP-A cells, and also reduced mutation frequencies of UV-irradiated shuttle vector plasmids replicating in XP-A cells. The survival of UV-irradiated cells and mutation frequencies of UV-irradiated plasmids were not completely restored to the unirradiated levels by the removal of CPD. These results suggest that both CPD and other UV damage, probably 6-4PD, can lead to cell killing and mutations.  相似文献   

17.
Ultraviolet (UV) irradiation induces predominantly cyclobutane and (6-4) pyrimidine dimer photoproducts in DNA. Several mechanisms for repairing these mutagenic UV-induced DNA lesions have been identified. Nucleotide excision repair is a major pathway, but mechanisms involving photolyases and DNA glycosylases have also been characterized. Recently, a novel UV damage endonuclease (UVDE) was identified that initiates an excision repair pathway different from previously established repair mechanisms. Homologues of UVDE have been found in eukaryotes as well as in bacteria. In this report, we have used oligonucleotide substrates containing site-specific cyclobutane pyrimidine dimers and (6-4) photoproducts for the characterization of this UV damage repair pathway. After introduction of single-strand breaks at the 5' sides of the photolesions by UVDE, these intermediates became substrates for cleavage by flap endonucleases (FEN-1 proteins). FEN-1 homologues from humans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe all cleaved the UVDE-nicked substrates at similar positions 3' to the photolesions. T4 endonuclease V-incised DNA was processed in the same way. Both nicked and flapped DNA substrates with photolesions (the latter may be intermediates in DNA polymerase-catalyzed strand displacement synthesis) were cleaved by FEN-1. The data suggest that the two enzymatic activities, UVDE and FEN-1, are part of an alternative excision repair pathway for repair of UV photoproducts.  相似文献   

18.
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.  相似文献   

19.
The mutagenic properties of UV-induced photoproducts, both the cis-syn thymine-thymine dimer (TT) and the thymine-thymine pyrimidine pyrimidone (6-4) photoproduct [T(6-4)T] were studied in mammalian cells using shuttle vectors. A shuttle vector able to replicate in both mammalian cells and bacteria was produced in its single-stranded DNA form. A unique photoproduct was inserted at a single restriction site and after recircularization of the single-stranded DNA vector, this latter was transfected into simian COS7 cells. After DNA replication the vector was extracted from cells and used to transform bacteria. Amplified DNA was finally analyzed without any selective screening, DNA from randomly picked bacterial colonies being directly sequenced. Our results show clearly that both lesions are mutagenic, but at different levels. Mutation frequencies of 2 and 60% respectively were observed with the TT dimer and the T(6-4)T. With the TT dimer the mutations were targeted on the 3'-T. With the T(6-4)T a large variety of mutations were observed. A majority of G-->T transversions were semi-targeted to the base before the 5'-T of the photoproduct. These kinds of mutations were not observed when the same plasmid was transfected directly into SOS-induced JM105 bacteria or when the T(6-4)T oligonucleotide inserted in a different plasmid was replicated in SOS-induced SMH10 Escherichia coil bacteria. These semi-targeted mutations are therefore the specific result of bypass of the T(6-4)T lesion in COS7 cells by one of the eukaryotic DNA polymerases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号