首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction process of adrenodoxin reductase with NADPH and NADH were investigated. The appearance of new intermediate with a broad absorption band at around 520 nm has been detected by rapid-scan stopped-flow spectrophotometry. Although the formation of this intermediate is more rapid with NADPH than with NADH, the rates of the subsequent decay to the fully reduced state are almost identical (Kobs values were 20.5 and 16.0s-1). These results indicate that the new intermediate is the complex formed between the oxidized enzyme and reduced pyridine nucleotide (enzyme-substrate complex), and that subsequent decay of the intermidiate is caused by a two-electron transfer process from the reduced pyridine nucleotide to the enzyme flavin. On the other hand, spectral and kinetic properties in the steady state of the reoxidation reaction of the enzyme reduced with NADPH and NADH were somewhat different. The rate of reoxidation of the enzyme under aerobic conditions from the reduced state to the oxidized state was 6.5 times faster when a 10-fold molar excess of NADH was used than when NADPH of the same concentration was used. This result is consistent with the fact that the NADH-dependent oxidase activity was 6.4 times greater than that dependent on NADPH. During reoxidation of the reduced enzyme under aerobic conditions in the presence of an excess of NADPH or NADH, the EPR spectra indicated the formation of the flavin semiquinone radical species. Similarly, the formation of semiquinone was observed in the absorption spectrum with either NADPH or NADH under the same conditions as in the EPR measurement. The intensity of the semiquinone signal on EPR was considerably smaller with NADH than with NADPH. These results suggest that NADP+ complex with the enzyme semiquinone protects the radical from oxidation by oxygen to a greater extent than NAD+, and consequently the semiquinone is easier to detect with NADPH than with NADH.  相似文献   

2.
Xanthine oxidoreductase catalyzes the final two steps of purine catabolism and is involved in a variety of pathological states ranging from hyperuricemia to ischemia-reperfusion injury. The human enzyme is expressed primarily in its dehydrogenase form utilizing NAD+ as the final electron acceptor from the enzyme's flavin site but can exist as an oxidase that utilizes O2 for this purpose. Central to an understanding of the enzyme's function is knowledge of purine substrate orientation in the enzyme's molybdenum-containing active site. We report here the crystal structure of xanthine oxidase, trapped at the stage of a critical intermediate in the course of reaction with the slow substrate 2-hydroxy-6-methylpurine at 2.3A. This is the first crystal structure of a reaction intermediate with a purine substrate that is hydroxylated at its C8 position as is xanthine and confirms the structure predicted to occur in the course of the presently favored reaction mechanism. The structure also corroborates recent work suggesting that 2-hydroxy-6-methylpurine orients in the active site with its C2 carbonyl group interacting with Arg-880 and extends our hypothesis that xanthine binds opposite this orientation, with its C6 carbonyl positioned to interact with Arg-880 in stabilizing the MoV transition state.  相似文献   

3.
The effects of arsenite on the reaction of reduced xanthine oxidase with oxygen are determined. The kinetics of the reaction monitoring the return of enzyme absorbance are investigated as are the kinetics and stoichiometries of peroxide and superoxide formation. Although some of the effects of arsenite are qualitatively consistent with expectations based on the known perturbation of the molybdenum midpoint potentials by arsenite, several results cannot be so easily explained. Specifically, arsenite introduces a very rapid phase (kobs = 110 s-1 at 125 microM oxygen) to the oxidative half-reaction which is not observed with the native enzyme. Arsenite also diminishes the amount of superoxide produced and eliminates one-electron reduced enzyme as a detectable kinetic intermediate in the reoxidation pathway. These differences appear to result from the ability of arsenite to greatly enhance the oxygen- and/or superoxide-reactivity of the reduced molybdenum center. This is reflected in the observation that reduced forms of arsenite-complexed xanthine oxidase lacking functional FAD (iodoacetamide-alkylated enzyme and deflavo enzyme) react relatively rapidly with oxygen whereas these reactions are quite slow in the absence of arsenite.  相似文献   

4.
The kinetics of electron transfer within the molybdoflavoenzyme xanthine oxidase has been investigated using the technique of pulse radiolysis. Subsequent to one-electron reduction of native enzyme at 20 degrees C in 20 mM pyrophosphate buffer, pH 8.5, using the CO-.2 species as reductant, a spectral change is observed having a rate constant of approximately 290 s-1. From its wavelength dependence, this spectral change is assigned to the transfer of an electron from flavin semiquinone (formed on reaction with the CO2-. species) to one of the iron-sulfur centers of the enzyme in an intramolecular equilibration process. The value for this rate constant agrees well with the 330 s-1 observed in previous stopped-flow pH-jump experiments carried out at 25 degrees C (Hille, R., and Massey, V. (1986) J. Biol. Chem. 261, 1241-1247). Experimental results with fully reduced enzyme reacting with the radiolytically generated N.3 species also support the conclusion that the equilibration of reducing equivalents among the oxidation-reduction centers of xanthine oxidase is a rapid process. Evidence is also found that xanthine oxidase possesses an unusually reactive disulfide bond that is reduced rapidly by radiolytically generated radicals. The ramifications of the present results with regard to the interpretation of experiments involving chemically reactive radical species, generated either by photolysis or radiolysis, are discussed.  相似文献   

5.
1. Kinetic studies have been performed with beef-heart cytochrome c oxidase, with the enzyme either in its oxidized, resting state or pretreated anaerobically with different amounts of reduced cytochrome c. The techniques used for the study have been stopped-flow spectrophotometry and electron paramagnetic resonance (EPR) spectroscopy. 2. The results show that the one-electron equivalent-reduced enzyme rapidly oxidizes one further equivalent of aerobically or anaerobically added ferrocytochrome c, with a rate constant of 5 . 10(6) M-1 . s-1. 3. When an excess of ferrocytochrome c in the presence of oxygen is added to the one-electron-reduced enzyme, the same turnover rate is obtained as in experiments with the resting enzyme. 4. The one-electron equivalent-enzyme reacts with CO with a rate constant of 4 . 10(4) M-1 . s-1 to yield approx. 35% of the CO compound as compared with the reaction between the fully reduced enzyme and CO. 5. It is shown that on reduction the enzyme is converted into an active form, but it is concluded that the enzyme does not have to be fully reduced before it is catalytically active.  相似文献   

6.
Bovine milk xanthine oxidase was potently inhibited by 6-(bromomethyl)-9H-purine in a time-dependent process with O2 as the electron acceptor. If the enzyme were assayed with phenazene ethosulfate as an electron acceptor, 6-(bromomethyl)-9H-purine was not an inhibitor. The rate of formation of inhibited enzyme increased with increasing concentrations of 6-(halomethyl)-9H-purine, decreased with increasing concentrations of O2, and increased in the presence of xanthine. The inhibited enzyme regained activity nonactinically at pH 7 with a t1/2 of 31 h. The optical difference spectrum between native enzyme and inhibited enzyme suggested that the enzyme-bound FAD was modified. This conclusion was confirmed by demonstrating that activity was restored to the inhibited enzyme if the enzyme-bound flavin was removed by treatment with CaCl2 and the resulting apoenzyme was reconstituted with FAD. Aerobically, 6-(bromomethyl)-9H-purine was oxidized by the enzyme to a species having a UV spectrum consistent with hydroxylation of the purine ring to form a urate analogue. Anaerobically, the enzyme reduced 6-(bromomethyl)-9H-purine to 6-methylpurine with 1 mol of enzyme being completely inhibited after reduction of 23 mol of 6-(bromomethyl)-9H-purine. Thus, 6-(bromomethyl)-9H-purine was not only oxidized by xanthine oxidase but was also reduced by the enzyme in a reaction that partitioned between formation of 6-methylpurine and inhibition of the enzyme by modification of the enzyme-bound flavin. Similar results were found when 6-(chloromethyl)-9H-purine was the inhibitor.  相似文献   

7.
1,2-Dehydro-N-acetyldopamine (dehydro-NADA) is an important catecholamine derivative involved in the cross-linking of insect cuticular components during sclerotization. Since sclerotization is a vital process for the survival of insects, and is closely related to melanogenesis, it is of interest to unravel the chemical mechanisms participating in this process. The present paper reports on the mechanism by which dehydro-NADA is oxidatively activated to form reactive intermediate(s) as revealed by pulse radiolysis, electron spin resonance spectroscopy, high performance liquid chromatography, and ultraviolet-visible spectroscopic analysis. Pulse radiolytic one-electron oxidation of dehydro-NADA by N3. (k = 5.3 x 10(9) M-1 s-1) or Br2.- (k = 7.5 x 10(8) M-1 s-1) at pH6 resulted in the rapid generation of the corresponding semiquinone radical, lambda max 400 nm, epsilon = 20,700 M-1 cm-1. This semiquinone decayed to form a second transient intermediate, lambda max 485 nm, epsilon = 8000 M-1 cm-1, via a second order disproportionation process, k = 6.2 x 10(8) M-1 s-1. At pH 6 in the presence of azide, the first order decay of this second intermediate occurred over milliseconds; the rate decreases at higher pH. At pH 6 in the presence of bromide, the intermediate decayed much more slowly over seconds, k = 0.15 s-1. Under such conditions, the dependence of the first order decay constant upon parent dehydro-NADA concentration led to a second order rate constant of 8.5 x 10(2) M-1 s-1 for reaction of the intermediate with the parent, probably to form benzodioxan "dimers." (The term dimer is used for convenience; the products are strictly bisdehydrodimers of dehydro-NADA (see "Discussion" and Fig. 11)) Rate constants of 5.9 x 10(5), 4.5 x 10(5), 2.8 x 10(4) and 3.5 x 10(4) M-1 s-1 were also obtained for decay of the second intermediate in the presence of cysteine, cysteamine, o-phenylenediamine, and p-aminophenol, respectively. By comparison with the UV-visible spectroscopic properties of the two-electron oxidized species derived from dehydro-NADA and from 1,2-dehydro-N-acetyldopa methyl ester, it is concluded that the transient intermediate exhibiting absorbance at 485 nm is the quinone methide tautomer of the o-quinone of dehydro-NADA. Sclerotization of insect cuticle is discussed in the light of these findings.  相似文献   

8.
The reaction between a cytochrome oxidase from Pseudomonas aeruginosa and oxygen has been studied by a rapid mixing technique. The data indicate that the heme d1 moiety of the ascorbate-reduced enzyme is oxidized faster than the heme c component. The oxidation of heme d1 is accurately second order with respect to oxygen and has a rate constant of 5.7 - 10(4) M-1 - s-1 at 20 degrees C. The oxidation of the heme c has a first order rate constant of about 8 s-1 at infinite concentration of O2. The results indicate that the rate-limiting step is the internal transfer of electrons from heme c to heme d1. These more rapid reactions are followed by more complicated but smaller abcorbance changes whose origin is still not clear. The reaction of ascorbate-reduced oxidase with CO has also been studied and is second order with a rate constant of 1.8 - 10(4) M-1 - s-1. The initial reaction with CO is followed by a slower reaction of significantly less magnitude. The equilibrium constant for the reaction with CO, calculated as a dissociation constant from titrimetric experiments with dithionite-reduced oxidase, is about 2.3 - 10(-6) M. From these data a rate constant of 0.041 s-1 can be calculated for the dissociation of CO from the enzyme.  相似文献   

9.
The relaxation behavior of the EPR signals of MoV, FAD semiquinone, and the reduced Fe/S I center was measured in the presence and absence of other paramagnetic centers in milk xanthine oxidase. Specific pairs of prosthetic groups were rendered paramagnetic by poising the native enzyme or its desulfo glycol inhibited derivative at appropriate potentials and pH values. Magnetic interactions were found between the following species: Mo--Fe/S I (100-fold increase in microwave power required to saturate the MoV EPR signal at 103 K when Fe/S I is reduced as opposed to oxidized), FAD--Fe/S I and FAD--Fe/S II (70-fold increase in power required to saturate the FADH.EPR signal at 173 K when either Fe/S center is reduced), and Fe/S I--Fe/S II (2.5-fold increase in power to saturate the reduced Fe/S I EPR signal at 20 K when Fe/S II is reduced). The Mo--Fe/S I interaction was also detected as a reduced Fe/S I induced splitting of the MoV EPR spectrum at 30 K. No splittings of the FADH. or Fe/S center spectra were detected. No magnetic interactions were found between FAD and Mo or between Mo and Fe/S II. These results, together with those of Coffman & Buettner [Coffman, R. E., & Buettner, G. R. (1979) J. Phys. Chem. 83, 2392-2400], were used to estimate the following approximate distances between the electron carrying prosthetic groups of milk xamthine oxidase: Mo--Fe/S I, 11 +/- 3 A; Fe/S I-Fe/S II, 15 +/- 4 A; FAD-Fe/S I, 16 +/- 4 A; FAD-Fe/S II, 16 +/- 4 A. A model for the arrangement of these groups within the xanthine oxidase molecule is suggested.  相似文献   

10.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

11.
Heterodisulfide reductase (Hdr) from methanogenic archaea is an iron-sulfur protein that catalyses the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol coenzymes, coenzyme M (H-S-CoM) and coenzyme B (H-S-CoB). In EPR spectroscopic studies with the enzyme from Methanothermobacter marburgensis, we have identified a unique paramagnetic species that is formed upon reaction of the oxidized enzyme with H-S-CoM in the absence of H-S-CoB. This paramagnetic species can be reduced in a one-electron step with a midpoint-potential of -185 mV but not further oxidized. A broadening of the EPR signal in the 57Fe-enriched enzyme indicates that it is at least partially iron based. The g values (gxyz = 2.013, 1.991 and 1.938) and the midpoint potential argue against a conventional [2Fe-2S]+, [3Fe-4S]+, [4Fe-4S]+ or [4Fe-4S]3+ cluster. This species reacts with H-S-CoB to form an EPR silent form. Hence, we propose that only a half reaction is catalysed in the presence of H-S-CoM and that a reaction intermediate is trapped. This reaction intermediate is thought to be a [4Fe-4S]3+ cluster that is coordinated by one of the cysteines of a nearby active-site disulfide or by the sulfur of H-S-CoM. A paramagnetic species with similar EPR properties was also identified in Hdr from Methanosarcina barkeri.  相似文献   

12.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

13.
Oxygen radical generation in the xanthine- and NADH-oxygen reductase reactions by xanthine oxidase, was demonstrated using the ESR spin trap 5,5'-dimethyl-1- pyrroline-N-oxide. No xanthine-dependent oxygen radical formation was observed when allopurinol-treated xanthine oxidase was used. The significant superoxide generation in the NADH-oxygen reductase reaction by the enzyme was increased by the addition of menadione and adriamycin. The NADH-menadione and -adriamycin reductase activities of xanthine oxidase were assessed in terms of NADH oxidation. From Lineweaver-Burk plots, the Km and Vmax of xanthine oxidase were estimated to be respectively 51 microM and 5.5 s-1 for menadione and 12 microM and 0.4 s-1 for adriamycin. Allopurinol-inactivated xanthine oxidase generates superoxide and OH.radicals in the presence of NADH and menadione or adriamycin to the same extent as the native enzyme. Adriamycin radicals were observed when the reactions were carried out under an atmosphere of argon. The effects of superoxide dismutase and catalase revealed that OH.radicals were mainly generated through the direct reaction of H2O2 with semiquinoid forms of menadione and adriamycin.  相似文献   

14.
Determination of the three-dimensional structure of cytochrome c oxidase, the terminal enzyme of the respiratory chain, from Paracoccus denitrificans offers the possibility of site-directed mutagenesis studies to investigate the relationship between the structure and the catalytic function of the enzyme. The mechanism of electron-coupled proton transfer is still, however, poorly understood. The P(M) intermediate of the catalytic cycle is an oxoferryl state the generation of which requires one additional electron, which cannot be provided by the two metal centers. It is suggested that the missing electron is donated to this binuclear site by a tyrosine residue that forms a radical species, which can then be detected in both the P(M) and F(*) intermediates of the catalytic cycle. One possibility to produce P(M) and F(*) intermediates artificially in cytochrome c oxidase is the addition of hydrogen peroxide to the fully oxidized enzyme. Using electron paramagnetic resonance (EPR) spectroscopy, we assign a radical species detected in this reaction to a tyrosine residue. To address the question, which tyrosine residue is the origin of the radical species, several tyrosine variants of subunit I are investigated. These variants are characterized by their turnover rates, as well as using EPR and optical spectroscopy. From these experiments, it is concluded that the origin of the radical species appearing in P(M) and F(*) intermediates produced with hydrogen peroxide is tyrosine 167. The significance of this finding for the catalytic function of the enzyme is discussed.  相似文献   

15.
The reaction of prostaglandin H synthase with prostaglandin G2, the physiological substrate for the peroxidase reaction, was examined by rapid reaction techniques at 1 degree C. Two spectral intermediates were observed and assigned to higher oxidation states of the enzymes. Intermediate I was formed within 20 ms in a bimolecular reaction between the enzyme and prostaglandin G2 with k1 = 1.4 x 10(7) M-1 s-1. From the resemblance to compound I of horseradish peroxidase, the structure of intermediate I was assigned to [(protoporphyrin IX)+.FeIVO]. Between 10 ms and 170 ms intermediate II was formed from intermediate I in a monomolecular reaction with k2 = 65 s-1. Intermediate II, spectrally very similar to compound II of horseradish peroxidase or complex ES of cytochrome-c peroxidase, was assigned to a two-electron oxidized state [(protoporphyrin IX)FeIVO] Tyr+. which was formed by an intramolecular electron transfer from tyrosine to the porphyrin-pi-cation radical of intermediate I. A reaction scheme for prostaglandin H synthase is proposed where the tyrosyl radical of intermediate II activates the cyclooxygenase reaction.  相似文献   

16.
A molybdopterin-free form of xanthine oxidase   总被引:1,自引:0,他引:1  
A previously unidentified fraction lacking xanthine:O2 activity has been isolated during affinity chromatography of bovine milk xanthine oxidase preparations on Sepharose 4B/folate gel. Unlike active, desulfo, or demolybdo forms of xanthine oxidase, this form, which typically comprises about 5% of an unfractionated enzyme solution, passes through the affinity column without binding to it, and is thus easily separated from the other species. The absorption spectrum of this fraction is very similar to that of the active form, but has a 7% lower extinction at 450 nm. Analysis of the fraction has shown that it is a dimer of normal size, but that it does not contain molybdenum or molybdopterin (MPT). The "MPT-free" xanthine oxidase contains 90-96% of the Fe found in active xanthine oxidase, and 100% of the expected sulfide. EPR and absorption difference spectroscopy indicate that the MPT-free fraction is missing approximately half of its Fe/S I centers. The presence of a new EPR signal suggests that an altered Fe/S center may account for the nearly normal Fe and sulfide content. Microwave power saturation parameters for the Fe/S II and Fe/S I centers in the MPT-free fraction are normal, with P1/2 equal to 1000 and 60 mW, respectively. The new EPR signal shows intermediate saturation behavior with a P1/2 = 200 mW. The circular dichroism spectrum of the MPT-free fraction shows distinct differences from that of active enzyme. The NADH:methylene blue activity of the MPT-free fraction is the same as that of active xanthine oxidase which exhibits xanthine:O2 activity, but NADH:cytochrome c and NADH:DCIP activities are diminished by 54 and 37%, respectively.  相似文献   

17.
Resonance Raman (RR) spectra of two reaction intermediates of D-amino acid oxidase with substrate analogs were obtained. The reaction intermediates studied were (1) the one in the aerobic oxidative reaction of the enzyme with beta-cyano-D-alanine and (2) the other in the reverse reductive reaction of the enzyme with chloropyruvate and ammonium. Both intermediates are characterized with the charge transfer absorption bands in the long wavelength region extending beyond 600 nm. The RR spectra of the two intermediates excited at 488.0 or 514.5 nm are those of oxidized flavin, which is consistent with our previous assumption that oxidized flavin is involved in these reaction intermediates. Relatively simple RR spectra were obtained for these intermediates with excitation at 632.8 nm which is within the region of the charge transfer bands. The resonance enhancement for the Raman lines around 1585 and 1350 cm-1 for either of the intermediates with excitation in the region of the charge transfer bands suggests that the charge transfer interaction involves the N(5)-C(4a) region extending to the C(10a)-N(1)-C(2) region of the isoalloxazine nucleus. The Raman line at 1657 cm-1 for the intermediate with chloropyruvate and ammonium was assigned to C = N of an imino acid from the isotopic frequency shift upon 15N-substitution. The assignment substantiates our previous conclusion that the intermediate involves an imino acid, alpha-imino-beta-chloropropionate.  相似文献   

18.
Samples of rapidly frozen xanthine oxidase reduced with xanthine have been warmed between ?78°C and ?50°C. EPR measurements of oxidation — reduction processes at these temperatures have revealed a new EPR signal which appears to be a disulfide radical involved in xanthine hydrolysis. Other EPR signal changes indicate that at pH 6.5 enzyme reduction by xanthine is rate limiting and at pH 8.5 or higher that some step following enzyme reduction is rate limiting. Evidence is presented for the lack of anaerobicity in most rapid freeze apparatus, the oxygen entering the samples during rapid freeze quenching in isopentane.  相似文献   

19.
The formation and disappearance of a photosensitive species during the reaction of reduced cytochrome c oxidase (putatively a3II.O2), EC 1.9.3.1, has been followed by (a) mixing a3II.CO with O2 in a stopped flow apparatus; (b) initiating the oxygen-oxidase reaction by removing CO with a laser flash; (c) probing the reaction mixture for photosensitivity with a second laser flash. Photosensitivity appears in the reaction mixture after the first laser flash, reaches a maximum after 50-60 microseconds ([O2] greater than 100 microM), and disappears in a further 50-100 microseconds. The kinetics can be represented by the scheme [formula: see text]. In species B, O2 is associated with the protein, possibly CuB, but not with the heme. Species C is the photosensitive a3II.O2 complex, and in D, a3 iron has been oxidized. The formation of species C is responsible for the rapid phase of absorbance change in the oxidase-oxygen reaction. The rate of reaction with oxygen approaches the limit of 35,000 s-1 at high oxygen. Nitric oxide, however, reacts with FeII oxidase with a rate of 1 x 10(8) M-1 s-1, which is accurately maintained up to an observed rate of 10(5) s-1. In flash photolysis experiments, approximately half of the photodissociated nitric oxidase recombines in a biphasic geminate reaction with rates of 1 x 10(8) s-1 and 1 x 10(7) s-1.  相似文献   

20.
The mechanism of action of xanthine oxidase has been investigated using single-turnover experiments in an effort to determine the primary source of the oxygen atom incorporated into product in the course of catalysis. It is found from mass spectroscopic analysis of the uric acid generated in these experiments that when 16O-labeled enzyme in [18O]H2O is reacted with substoichiometric amounts of xanthine (under conditions where no enzyme molecule is likely to react with more than one substrate molecule), the uric acid isolated from the reaction mixture contains 16O at position 8 of the purine ring. Conversely, when 18O-labeled enzyme in [16O]H2O is exposed to substoichiometric xanthine, 18O is incorporated into the product uric acid. These results strongly support a variety of chemical studies with model molybdenum complexes suggesting that the oxygen atom of the Mo = O group known to be present at the active site of xanthine oxidase is transferred to product in the course of catalysis. The mechanistic implications of the present work are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号