首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine how an input of protein to lake water affects expression of a proteolytic potential and influences the abundance and composition of a specific group of bacteria. Pseudomonas spp. were chosen as a target group that can be recovered on selective growth media and contain both proteolytic and nonproteolytic strains. Amendment with 2 mg of casein per liter increased total proteinase activity (hydrolysis of [(3)H]casein) by 74%, leucine-aminopeptidase activity (hydrolysis of leucine-methyl-coumarinylamide) by 133%, bacterial abundance by 44%, and phytoplankton biomass (chlorophyll a) by 39%. The casein amendment also increased the abundance of culturable Pseudomonas spp. by fivefold relative to control microcosms but did not select for proteolytic isolates. Soluble proteins immunochemically related to the Pseudomonas fluorescens alkaline proteinase, AprX, were detected in amended microcosms but not in the controls. The expression of this class of proteinase was confirmed exclusively for proteolytic Pseudomonas isolates from the microcosms. The population structure of Pseudomonas isolates was determined from genomic fingerprints generated by universally primed PCR, and the analysis indicated that casein amendment led to only minor shifts in population structure. The appearance of AprX-like proteinases in the lake water might thus reflect a general induction of enzyme expression rather than pronounced shifts in the Pseudomonas population structure. The limited effect of casein amendment on Pseudomonas population structure might be due to the availability of casein hydrolysates to bacteria independent of their proteinase expression. In the lake water, 44% of the total proteinase activity was recovered in 0.22-microm-pore-size filtrates and thus without a direct association with the bacteria providing the extracellular enzyme activity. Since all Pseudomonas isolates expressed leucine-aminopeptidase in pure culture, proteolytic as well as nonproteolytic pseudomonads were likely members of the bacterial consortium that metabolized protein in the lake water.  相似文献   

2.
AIMS: Greenhouse misting systems used for watering plants produce fine aerosols. They are a possible cause for bacterial infections. This study investigates the colonization of greenhouse misting systems with Legionella spp. and Pseudomonas spp. and evaluates a possible health hazard. METHODS AND RESULTS: Between June and September 2003, a total of 80 water samples were collected in 20 different greenhouse systems in Germany, each tested on two different occasions. Each time, water was drawn at a central tap and at the outlet of spray nozzles. Sampled greenhouses were used to cultivate various plants and trees for commercial, recreational or scientific reasons, some of them in tropical conditions. Legionella spp. were detected in 10% of the systems (two systems), but only in low numbers. On the contrary, Pseudomonas spp. were recovered from 70% of the greenhouse watering systems (14 systems), occasionally at counts greater than 10,000 CFU per 100 ml. A random amplified polymorphic DNA polymerase chain reaction typing method was used to demonstrate that each colonized greenhouse had one or several individual strains of Legionella and Pseudomonas that could not be detected in any other system. CONCLUSIONS: This study demonstrates that aerosolizing greenhouse watering systems may be contaminated with Legionella or Pseudomonas which under certain circumstances could become a potential source of infection for workers and visitors. SIGNIFICANCE AND IMPACT OF THE STUDY: The study results indicate that greenhouse misting systems should be included in Legionella and Pseudomonas monitoring and control programs.  相似文献   

3.
AIMS: This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. METHODS AND RESULTS: Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. CONCLUSIONS: The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.  相似文献   

4.
5.
Five different species of freshwater bacteria ( Pseudomonas sp., Vibrio sp., Klebsiella sp., Enterobacter sp., Serratia sp.) and a mixed natural population were used separately to inoculate cultures of axenic duckweed ( Lemna minor ). Inoculation with Vibrio sp. caused the final population density of Lemna plants to be significantly greater after 52 d than that of either axenic controls or Lemna inoculated with a mixed bacterial community. Inoculation with Pseudomonas sp. caused the final population density of Lemna to be significantly higher than with the mixed bacterial treatment. Inoculation of Lemna with Klebsiella sp., Enterobacter sp. or Serratia sp. resulted in higher plant populations compared with controls, but these differences were not statistically significant. The presence of a mixed community of bacteria did not significantly affect the final population density of Lemna compared with the controls. However, Lemna plants inoculated with a natural population of bacteria showed significantly higher levels of senescence compared with the other five treatments and the controls. None of the five single bacterial taxa used appeared to have any significant effect of the sensescence of duckweed.  相似文献   

6.
D P Labeda  K C Liu    L E Casida  Jr 《Applied microbiology》1976,31(4):551-561
Arthrobacter globiformis and a Pseudomonas soil isolate were incubated separately and in combination in soil that had been presterilized by autoclaving. Growth and other responses of the cells in situ in this soil were monitored by plate counts and transmission electron microscopy examinations of cell sections. During the soil incubations, some of the samples were first allowed to dry and then were remoistened with water or with a dilute or a concentrated nutrient solution. Based on plate counts and ultrastructural analysis. Arthrobacter seemed to be in a non-multiplying coccoid-rod resting state and to be virtually immune to soil drying. Addition of a dilute nutrient solution helped maintain cell ultrastructure and prevent a low level of lysing that occurred in the absence of nutrient addition. Addition of a concentrated nutrient solution brought on cell multiplication as both coccoid-rods and long rods, but the ultimate form with further incubation was the coccoid-rod. The Pseudomonas strain suffered death and ultrastructural deterioration as water became less available. It responded by cell multiplication to an equal extent when either water or dilute nutrients were added, but possibly was able to give a growth response to nutritive amendment when a concentrated nutrient addition was made. The Arthrobacter was not affected by the presence of Pseudomonas in dual culture. The Pseudomonas, however, possibly suffered a nutritive deficiency under these conditions.  相似文献   

7.
Arthrobacter globiformis and a Pseudomonas soil isolate were incubated separately and in combination in soil that had been presterilized by autoclaving. Growth and other responses of the cells in situ in this soil were monitored by plate counts and transmission electron microscopy examinations of cell sections. During the soil incubations, some of the samples were first allowed to dry and then were remoistened with water or with a dilute or a concentrated nutrient solution. Based on plate counts and ultrastructural analysis. Arthrobacter seemed to be in a non-multiplying coccoid-rod resting state and to be virtually immune to soil drying. Addition of a dilute nutrient solution helped maintain cell ultrastructure and prevent a low level of lysing that occurred in the absence of nutrient addition. Addition of a concentrated nutrient solution brought on cell multiplication as both coccoid-rods and long rods, but the ultimate form with further incubation was the coccoid-rod. The Pseudomonas strain suffered death and ultrastructural deterioration as water became less available. It responded by cell multiplication to an equal extent when either water or dilute nutrients were added, but possibly was able to give a growth response to nutritive amendment when a concentrated nutrient addition was made. The Arthrobacter was not affected by the presence of Pseudomonas in dual culture. The Pseudomonas, however, possibly suffered a nutritive deficiency under these conditions.  相似文献   

8.
Pseudomonas bacteria capable of inhibiting maize fungal pathogens were isolated from caryopses of three of 11 populations of eastern gamagrass ( Tripsacum dactyloides ) collected from eastern and central United States. The bacteria inhibited fungal pathogens in pure cultures and a zone of fungal inhibition 1–2 cm wide occurred around surface sterilized maize kernels that were treated with the bacteria and placed in culture dishes containing 2% maize meal agar. In cold-soil germination tests, there were no significant ( P < 0.05) differences in germination of scarified maize kernels that were treated with gum arabic (sticking agent) and one of the bacterial strains (98%) or the commercial fungicide, Captan (96%). Both of these treatments resulted in significantly higher germination than scarification (50%) or scarification and gum arabic alone (58%). Non-scarified controls had 85% germination. The results indicate that Pseudomonas may be effective in preventing invasion of damaged seeds by pathogens capable of inhibiting germination and destroying seed embryos.  相似文献   

9.
Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in response to water limitations and how the presence of alginate in turn influences biofilm development and stress tolerance. Total exopolysaccharide (EPS) and alginate production increased with increasing matric, but not solute, stress severity, and alginate was a significant component, but not the major component, of EPS. Alginate influenced biofilm architecture, resulting in biofilms that were taller, covered less surface area, and had a thicker EPS layer at the air interface than those formed by an mt-2 algD mutant under water-limiting conditions, properties that could contribute to less evaporative water loss. We examined this possibility and show that alginate reduces the extent of water loss from biofilm residents by using a biosensor to quantify the water potential of individual cells and by measuring the extent of dehydration-mediated changes in fatty acid composition following a matric or solute stress shock. Alginate deficiency decreased survival of desiccation not only by P. putida but also by Pseudomonas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a. Our findings suggest that in response to water-limiting conditions, pseudomonads produce alginate, which influences biofilm development and EPS physiochemical properties. Collectively these responses may facilitate the maintenance of a hydrated microenvironment, protecting residents from desiccation stress and increasing survival.  相似文献   

10.
Leucocytes from 26 patients with cystic fibrosis (CF) and 18 healthy controls were investigated by migration inhibition induced by a variety of antigens. In patients with CF cell-mediated immunity was found to human lung and pancreatic tissue extracts as well as to Aspergillus fumigatus, Pseudomonas aeruginosa, and food antigens but not to brain, heart, or kidney. Those patients with the severest form of the disease had the greatest impairment of cell-mediated immunity, but this impairment could be reversed by steroid treatment. Cell-mediated cytotoxicity may also be concerned in the pathogenesis of CF.  相似文献   

11.
AIMS: Pseudomonas spp. are considered the most important milk spoilage organisms. Here we describe development of a fluorescence in situ hybridization (FISH) probe specific for detection and enumeration of Pseudomonas spp. in milk. METHODS AND RESULTS: 16S rRNA sequences were analysed to develop specific oligonucleotide probe for the genus Pseudomonas. Twenty different Pseudomonas spp. and 23 bacterial species from genera other than Pseudomonas (as negative controls) were tested. All tested Pseudomonas spp. yielded a positive FISH reaction, whereas negative controls showed no FISH reaction except for Burkholderia cepacia that showed a relatively weak FISH reaction. The FISH assay specifically stains Pseudomonas in milk when the milk contains a mixture of other bacterial species. The FISH assay takes 2 h and compares favourably with current culturing methods, which take a minimum of 48 h. Specificity of the probe was validated using polymerase chain reaction to selectively amplifying the Pseudomonas rDNA gene and sequencing the gene products. CONCLUSIONS: The method presented in this study allows simultaneously detection, identification and enumeration of Pseudomonas spp. in milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and accurate enumeration of Pseudomonas facilitates the identification of specific contamination sources in dairy plants, the accurate validation of pasteurization treatments and the prediction of shelf life of processed milk.  相似文献   

12.
The conventional methods for the microbiological examination of natural mineral water were compared with a simplified procedure. The results indicate that when indicator micro-organisms are present in water, they may not be detected in the simplified method. An alternative procedure, including the determination of Pseudomonas aeruginosa, is suggested.  相似文献   

13.
The conventional methods for the microbiological examination of natural mineral water were compared with a simplified procedure. The results indicate that when indicator micro-organisms are present in water, they may not be detected in the simplified method. An alternative procedure, including the determination of Pseudomonas aeruginosa , is suggested.  相似文献   

14.
15.
AIMS: To identify native Antarctic bacteria capable of oil degradation at low temperatures. METHODS AND RESULTS: Oil contaminated and pristine soils from Signy Island (South Orkney Islands, Antarctica) were examined for bacteria capable of oil degradation at low temperatures. Of the 300 isolates cultured, Pseudomonas strain ST41 grew on the widest range of hydrocarbons at 4 degrees C. ST41 was used in microcosm studies of low temperature bioremediation of oil-contaminated soils. Microcosm experiments showed that at 4 degrees C the levels of oil degradation increased, relative to the controls, with (i) the addition of ST41 to the existing soil microbial population (bioaugmentation), (ii) the addition of nutrients (biostimulation) and to the greatest extent with (iii) a combination of both treatments (bioaugmentation and biostimulation). Addition of water to oil contaminated soil (hydration) also enhanced oil degradation, although less than the other treatments. Analysis of the dominant species in the microcosms after 12 weeks, using temporal temperature gradient gel electrophoresis, showed Pseudomonas species to be the dominant soil bacteria in both bioaugmented and biostimulated microcosms. CONCLUSIONS: Addition of water and nutrients may enhance oil degradation through the biostimulation of indigenous oil-degrading microbial populations within the soil. However, bioaugmentation with Antarctic bacteria capable of efficient low temperature hydrocarbon degradation may enhance the rate of bioremediation if applied soon after the spill. SIGNIFICANCE AND IMPACT OF THE STUDY: In the future, native soil bacteria could be of use in bioremediation technologies in Antarctica.  相似文献   

16.
Oral and sputum isolates of Pseudomonas aeruginosa in patients with cystic fibrosis were investigated. Of the 17 patients studied, 12 patients (71%) yielded both mucoid and nonmucoid variants of Pseudomonas aeruginosa from sputum and (or) various oral ecological sites, such as buccal mucosa, tongue dorsum, dental plaques, and saliva. A total of 51 strains of mucoid and nonmucoid Pseudomonas aeruginosa were isolated from these patients and were phenotypically characterized by both pyocine typing and serotyping. Five patients (42%) were colonized or infected by a single strain of Pseudomonas aeruginosa, whereas 7 patients (58%) were cocolonized or coinfected by two or more phenotypically different strains of Pseudomonas aeruginosa. To understand the mechanisms involved in Pseudomonas aeruginosa colonization, it may be necessary to identify multiple isolates of Pseudomonas aeruginosa not only from the sputum but also from the various oral ecological sites and to further explore the role of the oral cavity in this colonization.  相似文献   

17.
Some 136 isolates of fluorescent pseudomonads were isolated from the rhizosphere of plants growing in 5 different ecosystems. Thirty-four percent of these isolates inhibited the causal agent of cassava stem rot, Erwinia carotovora pv. carotovora, in vitro. One month old plantlets, produced by rooting the shoots of 4 cultivars in distilled water, were inoculated with a suspension (1.1 × 109 cells/ml) of each pseudomonad. Some isolates increased root weight by 95% over uninoculated controls two months after planting when inoculated at planting, and 15, and 30 days afterwards. Inoculated plants were free from symptoms of root pathogens and roots filled earlier than controls. Taxonomic studies showed that these bacterial isolates, were either Pseudomonas putida (90%) or P. fluorescens (10%).  相似文献   

18.
A Spirillum sp. and a Pseudomonas sp. possessing crossing substrate saturation curves for L-lactate were isolated from fresh water by chemostat enrichment. Their Ks and mumax values for L-lactate were: Spirillum sp., 23 micrometer and 0.35 h-1, respectively; Pseudomonas sp., 91 micrometer and 0.64 h-1, respectively. Under L-lactate limitation, pseudomonas sp. outgrew Spirillum s. at dilution rates (D) above 0.29 h-1, but the converse occurred at lower D values. The advantage of Spirillum sp. increased with decreasing D until, at D = 0.05 h-1 (i.e. L-lactate concentration of approximately 1 micrometer), Pseudomonas sp. was eliminated from the culture essentially as a non-growing population. In Spirillum sp. the Km for L-lactate transport (5.8 micrometer) was threefold lower than in Pseudomonas sp. (20 micrometer); Spirillum sp. also possessed a higher Vmax for the transport of this substrate. The surface to volume ratio was higher in Spirillum sp. and increased more markedly than in Pseudomonas sp. in response to decreasing D. Thus, a more efficient scavenging capacity contributes to the advantage of Spirillum sp. at low concentrations of the carbon source. Although most of the enzymes of L-lactate catabolism were more active in Pseudomonas sp., NADH oxidase activity was about twice as high in Spirillum sp.; and, unlike Pseudomonas sp., the cytochrome c content of this bacterium increased markedly with decreasing D. A more active and/or more efficient respiratory chain may therefore also play a role in the advantage of Spirillum sp. The other factors which appear to be involved include a lower energy of maintenance of Spirillum sp. [0.016 g L-lactate (g cell dry wt)-1 h-1 compared with 0.066 in Pseudomonas sp.] and a lower minimal growth rate.  相似文献   

19.
M J Ruwart  A Haug 《Cryobiology》1974,11(3):260-262
Pseudomonas F8 was tested for freeze-thaw sensitivity after being washed several times with water. Survival increased to 85% in the fourth wash. Addition of 1% sodium chloride decreased survival to the level obtained when cells were frozen in brain-heart infusion broth. No differences were observed between cells grown at 5 or 23 °C. The freeze-thaw sensitivity of Pseudomonas may be due to the cell's exposure to concentrated medium salts during cooling and warming.  相似文献   

20.
The promotion of polycyclic aromatic hydrocarbon (PAH) degradation was demonstrated in the rhizosphere of Festuca arundinacea with Pseudomonas fluorescens. P. fluorescens 5RL more significantly interacted with salicylate and dextrose in the agar containing tall fescue than agar without plant roots. Although the presence of tall fescue did not promote catabolic enzyme induction in the absence of salicylate, an increase in dioxygenase activity relative to no plant controls implies that this plant may enhance the degradation of PAHs or facilitate the genotypes that are capable of transforming PAH in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号