首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
p53 in the cytoplasm: a question of overkill?   总被引:5,自引:0,他引:5  
Baptiste N  Prives C 《Cell》2004,116(4):487-489
  相似文献   

5.
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer’s disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- d-fructofuranosyl (2–2) β- d-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10–40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25–35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25–35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25–35-induced increases in [Ca2+] i . Furthermore, Bajijiasu reversed Aβ25–35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25–35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.  相似文献   

6.
Beta-amyloid peptide (Aβ), a major protein component of senile plaques, has been considered as a critical cause in the pathogenesis of Alzheimer’s disease (AD). Modulation of the Aβ-induced neurotoxicity has emerged as a possible therapeutic approach to ameliorate the onset and progression of AD. The present study aimed to evaluate the protective effect of isorhynchophylline, an oxindole alkaloid isolated from a Chinese herb Uncaria rhynchophylla, on Aβ-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results showed that pretreatment with isorhynchophylline significantly elevated cell viability, decreased the levels of intracellular reactive oxygen species and malondialdehyde, increased the level of glutathione, and stabilized mitochondrial membrane potential in Aβ25-35-treated PC12 cells. In addition, isorhynchophylline significantly suppressed the formation of DNA fragmentation and the activity of caspase-3 and moderated the ratio of Bcl-2/Bax. These results indicate that isorhynchophylline exerts a neuroprotective effect against Aβ25-35-induced neurotoxicity in PC12 cells, at least in part, via inhibiting oxidative stress and suppressing the mitochondrial pathway of cellular apoptosis.  相似文献   

7.
8.
Hock AK  Vousden KH 《Cell》2012,149(6):1183-1185
p53 is a key tumor suppressor protein that has numerous functions. Its primary mode of action has generally been ascribed to the induction of cell-cycle arrest, apoptosis, or senescence upon stress. Li et al. challenge this dogma with evidence that all three of these programs are dispensable for p53's tumor suppressive role.  相似文献   

9.
p53: The Janus of autophagy?   总被引:2,自引:0,他引:2  
The autophagy pathway functions in adaptation to nutrient stress and tumour suppression. The p53 tumour suppressor, previously thought to positively regulate autophagy, may also inhibit it. This dual interplay between p53 and autophagy regulation is enigmatic, but may underlie key aspects of metabolism and cancer biology.  相似文献   

10.
The prevalence of mutations that inactivate the p53 tumor suppressor gene in human cancers reveals the importance of p53 in preventing cancer. Recent progress has generated increased enthusiasm for re-activating p53 in tumors with mutant p53 proteins as well as for increasing p53 function in tumors expressing wild-type p53 that is inhibited in trans. However, excessive p53 activity can be detrimental to the host, potentially limiting the utility of p53 activation as a therapeutic strategy. For example, uncontrolled p53 activity is lethal to the murine embryo, and p53 has been associated with increased aging in people and mice. Here we review the literature linking p53 to aging and discuss reports demonstrating that p53 can suppress tumor formation without accelerating aging. We raise the possibility that activation of p53 remains a promising strategy for cancer chemoprevention and therapy even if, under some circumstances, p53 might accelerate aging.  相似文献   

11.
Recent scientific discoveries have thrust mutants of the tumor suppressor protein p53 into the forefront of the war on cancer, and hold out eventual hope for a small molecule drug that will be useful in treating human cancers with mutant p53 protein.  相似文献   

12.
《Autophagy》2013,9(4):305-306
Preconditioning and postconditioning increased numbers of living cells and decreased that of necrotic, apoptotic and autophagic cells in anoxia-reoxygenation of isolated cardiomyocytes. It was established that proteasome inhibitors prevented the necrotic and apoptotic cell death of cardiomyocytes in anoxia-reoxygenation and in such a way reproduce the effect of pharmacological preconditioning and postconditioning. In this case, the population of autophagic cardiomyocytes has not changed considerably or had a tendency of increasing compared to anoxia-reoxygenation. The data obtained showed that the specific protective effect of proteasome inhibitors could be caused by autophagy activation. In our recent experiments new data supporting this hypothesis were obtained. The inhibition of autophagy with N-3-methyladenine during anoxia-reoxygenation caused an increase in the number of necrotic cells and a decrease of the live cell population. Moreover, simultaneous inhibition of both autophagy and apoptosis (N-3-methyladenine and caspase-3 inhibitor application) in anoxia-reoxygenation led to a dramatic increase of necrotic cardiomyocytes and a concomitant decrease in the number of living cells. Thus, the process of autophagy in cardiomyocytes during anoxia-reoxygenation may lead not only to programmed cell death, but has also some protective effect. The mechanisms of this phenomenon are still in need of thorough investigation.  相似文献   

13.
14.
15.
Corresponds to: Mukhopadhyay UK, et al. p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 2009; 29:3088-98.  相似文献   

16.
17.
The ubiquitin-proteasome pathway has become an increasingly important regulatory mechanism for protein function. Countless proteins are degraded by the addition of polymeric ubiquitin chains, but more recently, monoubiquitination has emerged as a mechanism for regulatory functions other than proteasomal degradation. Monoubiquitination acts as a signal in nuclear export for the tumor suppressor protein p53. Different levels of Mdm2 are capable of inducing both mono- and polyubiquitination in a dosage dependent manner, thus determining p53's fate. Our findings demonstrate monoubiquitin-mediated protein trafficking can be expanded to nuclear-cytoplasmic shuttling, and also imply similar scenarios may apply to other cellular factors.  相似文献   

18.
19.
HIF-1alpha and p53: the ODD couple?   总被引:5,自引:0,他引:5  
Tumor hypoxia activates hypoxia-inducible factor-1 (HIF-1) and induces the accumulation of the tumor suppressor p53. HIF-1 signaling stimulates angiogenesis and mediates cellular adaptation to hypoxia, whereas p53 promotes hypoxia-induced apoptosis. A recent article provides in vitro biophysical evidence supporting a direct interaction between p53 and the oxygen-dependent degradation domain of the HIF-1alpha subunit. The article identifies potential structural parameters required for this interaction and suggests an alternative mechanism by which p53 might impact tumor response to therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号