首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar‐free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta‐adrenoceptors (β‐AR) are G protein‐coupled receptors (GPCRs) expressed on all skin cell‐types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β‐AR‐mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β‐AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)‐dependent and protein kinase A (PKA)‐independent mechanisms as demonstrated through use of an EPAC agonist that auto‐inhibited the cAMP‐mediated β‐AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β‐AR activation reduced pro‐angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β‐AR‐mediated autocrine and paracrine anti‐angiogenic mechanisms. In more complex environments, β‐AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β‐AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β‐AR agonists could be promising anti‐angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.  相似文献   

11.
12.
13.
14.
15.
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
The voltage‐dependent anion channel (VDAC) is a highly conserved integral protein of mitochondria in different eukaryotic species. It forms a selective channel in the mitochondrial outer membrane that serves as the controlled pathway for small metabolites and ions. In this study, a VDAC gene, EcVDAC1, was isolated from orange‐spotted grouper (Epinephelus coioides). The EcVDAC1 exhibits ubiquitous expression in various tissues of orange‐spotted grouper and is upregulated in liver, gill, and spleen after stimulation with lipopolysaccharides (LPS). Subcellular localization analysis shows that the EcVDAC1 protein colocalized with the mitochondria. A caspase‐3 assay demonstrates that overexpression of the EcVDAC1 induced apoptotic cell death in fathead minnow cells. The data presented in this study provide new information regarding the relationship between LPS and the EcVDAC1 gene, suggesting that the fish VDAC1 gene may play an important role in antibacterial immune response.  相似文献   

19.
Abstract: The blood–brain barrier (BBB) transport of a highly lipid-soluble peptide, [3H]cyclosporin, was studied in ketamine-anesthetized rats using the carotid artery injection technique. For comparison, peptide transport into rat liver was also assessed with the portal vein injection technique. Despite the high lipid solubility of this peptide (1-octanol/Ringer's partition coefficient = 991 ± 55), the extraction by rat brain was only 2.9 ± 0.5% in the presence of 80% human serum, and this value approximated the extraction for a poorly diffusible substance such as [3H]inulin, 2.0 ± 0.1%. In contrast, the hepatic extraction of [3H]cyclosporin was high, 84 ± 2%, in the presence of 80% human serum. The BBB transport of cyclosporin is markedly restricted owing to the combined effects of binding by serum proteins and a paradoxically low permeability of the BBB to the peptide.  相似文献   

20.
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.Angiogenesis, the formation of blood vessels from pre-existing blood vessels, is a complex process essential for repairing injured tissue or supporting tissue growth. A great deal of work has been done to focus on understanding this phenomenon as it occurs in vivo, in particular with regard to its roles in embryonic development (15). In contrast to embryonic development, adult angiogenesis and inflammation are closely related phenomena that occur in vivo in a number of physiologically relevant processes. Inflammation lies at the crux of multiple physiological events in biological systems that precede the induction of angiogenesis: wound healing (68), chronic wounds (8), inflammatory disorders (9, 10), and cancer (9, 11, 12).Inflammatory reactions also confound tissue engineered implantable three-dimensional constructs that provide innovative clinical treatments of various diseases and injuries (1317). As complex tissues become developed for applications in clinical trials, tissue vascularization for constructs of considerable size and volume is required for their survival (18, 19). Once implanted, these constructs will also experience significant inflammatory responses within their host''s local milieu (20, 21). These circumstances demonstrate the necessity for understanding the interactions between inflammation and angiogenesis, such as the development of predictive models (22). Elucidating specific intracellular mechanisms can provide insight for novel approaches in treatment of diseases as well as predicting responses to artificially engineered tissues.Recently, studies have shown that chemokines, which play a central role in inflammation, can influence the outcomes of angiogenesis (2326) by promoting new blood vessel growth (e.g. CXCL1–3, CXCL5–8, CXCL12) or inhibiting its formation altogether (e.g. CXCL4, CXCL9–11, CXCL13) (26). In particular, a large body of information is available on platelet factor 4 (PF-4/CXCL4) and its ability to inhibit and even induce regression of angiogenesis. PF-4 is found throughout the adult body, at roughly 0.25–1.25 nm (2–10 ng/ml) in blood plasma, but as high as 25 μm in localized areas during wound healing (27, 28). Its ubiquitous presence, implication in cancer and vascular diseases, and use as a potential drug therapy have made PF-4 a key point of interest in influencing angiogenesis in vivo (2730). In addition to inducing angiostasis, PF-4 can inhibit cell proliferation by halting S phase progression and reducing endothelial cell migration (25, 28, 3032). Despite the wealth of information on PF-4 and its mechanistic effects on immune cells, scarce literature exists on the nature of the molecular signaling with endothelial cells to inhibit angiogenesis. Furthermore, the complexity of PF-4 mediated signaling and its potential to interact through multiple binding mechanisms makes it difficult to determine how PF-4 can interfere with angiogenesis (28, 29, 33, 34). Possible angiogenic signaling network interference mechanisms for PF-4 include the sequestration of growth factors and proteoglycans, antagonism of integrin-mediated signaling, or direct signaling through its chemokine receptor CXCR3, all of which have supporting evidence in previous literature (28). Along with the multiple mechanisms PF-4 may utilize for signaling, only limited studies on direct signaling elicited by PF-4 on endothelial cells have been reported; one of interest found that P38 MAPK can be activated via CXCR3 on endothelial cells cultured on plastic (35), whereas another, more definitive study showed PF-4 acting similarly to other CXCR3 ligands in activating PKA to prevent m-calpain-mediated rear de-adhesion of moving cells (36, 37). Furthermore, PF-4 could have variable sensitivities in different endothelial cell types because of heterogeneous expression of CXCR3 (38).In our study, we sought to develop an approach to assess network-level signaling interactions between PF-4 and the major angiogenic inducer vascular endothelial growth factor (VEGF)1 within a contextually relevant 3-D angiogenesis platform, in a controlled environment to understand what role these two factors may play. We developed methods to reduce extracellular matrix contamination in our samples and were able to successfully use a two-step lysis method with a MS compatible detergent-based lysis buffer. By taking advantage of iTRAQ-based multiplexed quantitation, we were able to collect quantitative phosphoprotein signaling data from our system with early and late temporal resolution. Using correlation network methods to observe differences in our system, we found that simultaneous treatment with PF-4 and VEGF induced changes in migrational pathway topology when compared with VEGF treatment alone. Most often, these changes appeared as losses in correlations between different migrational signaling proteins. We found that several different signaling pathways involved with migration were affected, including central proteins P38α MAPK, focal adhesion kinase (FAK), and Src family kinases. Furthermore, we found statistically significant differences in tyrosine phosphorylation when HDMVECs were stimulated with VEGF and PF-4, as opposed to only VEGF. In addition, we were able to recapitulate previously reported findings on how PF-4 infers its angiostatic effects on endothelial cells. Surprisingly, our data set revealed EphA2 receptor as a central node for PF-4 signaling, indicating that it may possess a complementary role in the balance of angiogenic and angiostatic effects.To our knowledge, this is the first attempt at performing MS-based analysis of phosphotyrosine signaling networks within the context of an environment that is amenable to angiogenesis. Our work provides a step forward in applying high throughput and systems-level phosphoproteomics data collection to more physiologically relevant experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号