首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a homologous series of di-guanidines (NH2C(–NH)NH(CH2)xNHC(–NH) NH2) where x=2–12, greatest inhibition of polyamine oxidase was found with x=8. The synthetic fungicide guazatine269-1 was particularly effective as an inhibitor of polyamine oxidase, with Ki of ca 10-8 M. Inhibition due to the tri-amine derived from guazatine by hydrolysis was less effective by a factor of ca 200. Comparison of various inorganic salts at 1 M showed that polyamine oxidase activity was enhanced in the order RbCl>KCl>KBr>NH4Cl>NaNO3>LiCl>LiCl=NaCl> control (no salt) >CaCl2=MgCl2. Activity in RbCl was about 4 to 5 times greater than in the salt-free control. Enzyme activity is rapidly lost during assay. This loss of activity could not be attributed to inhibition by aminopropylpyrroline or diaminopropane. Moreover the superoxide scavenger copper salicylate had no protective effect on enzyme activity.  相似文献   

2.
Polyamine oxidase, purified 260-fold from maize shoots, was light yellow in colour. Maximum light-absorption was at 450 nm and was decreased by the addition of either sodium dithionite or spermidine, but not by putrescine. Under aerobic conditions, the enzyme could use p-benzoquinone as an electron acceptor. Cu2+ inhibited the enzyme activity, while SO3 was stimulatory. Several metal-binding agents and thiol reagents were without effect.  相似文献   

3.
Mesophyll protoplasts isolated from peeled oat ( Avena sativa L. cv Victory) leaves with 1% (w/v) Cellulysin in 20 m M KPO4, pH 5.5 and 0.6 M sorbitol retain about 6% of the polyamine oxidase (PAO, EC 1.4.3.4) activity of the whole peeled leaf. However, more than 99% of the oat leaf PAO activity is apoplastic and can be extracted by vacuum infiltration with 200 m M NaCl and this procedure extracts no activity for the cytoplasmic marker enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49). By these criteria we consider PAO in oat leaves to be totally apoplastic and PAO found in the isolated protoplast to be contamination. The degree of protoplast contamination by PAO depends on the pH and ionic strength of the isolating and washing medium. It can be eliminated by washing protoplasts in 0.6 M sorbitol with 100 m M KPO4, pH 6.5. Pellets of lysed protoplasts incubated with dialyzed apoplastic enzymes in 5 m M KPO4, pH 5.5 adsorb about 87% of the added PAO activity but only about 25% of the added peroxidase (EC 1.11.1.7) activity. The adsorbed activity can be solubilized from the pellet by extraction with 1 M NaCl. The results demonstrate that weakly ionically bound cell wall enzymes may contaminate protoplasts isolated and purified by conventional techniques.  相似文献   

4.
Polyamine analogues have been studied as potential inhibitors or substrates of barley leaf polyamine oxidase. NH2(CH2)3NH(CH2)10NH2 was particularly effective as an inhibitor of spermine oxidation at pH 4·5 (Ki = 5 × 10?6 M). Methylglyoxal-bis(guanylhydrazone) inhibited spermine oxidation only slightly (Ki = 10?4 M). Activity with the polyamine analogues as substrates was generally 10% or less of the activity with spermine. The Km for oxygen was 3 × 10?4 M. The Km for spermine oxidation was independent of oxygen concentration. Using the N-methyl-2-benzothiazolone hydrazine reagent, 1-(3-aminopropyl)pyrroline was shown to be formed stoichiometrically by the enzyme on oxidation of spermine. The enzyme will not function as a dehydrogenase in the presence of oxygen with either potassium ferricyanide or dichlorophenolindophenol as electron acceptors. Activity in the leaves increased with age, up to 4 weeks. In the leaves of 11-week-old plants activity was lower than in leaves of 1-week-old plants. The enzyme was mainly associated with an easily-sedimented particulate fraction, and relatively small proportions were found in the cell wall or soluble fractions.  相似文献   

5.
The polyamine oxidase of barley shoots is associated with a particle which sediments in low centrifugal fields. The enzyme was removed from these particles by washing in 0·5 M NaCl and then purified about 24-fold. The purified enzyme oxidized spermine stoicheiometrically to 1,3-diaminopropane and 1-(3-aminopropyl)pyrroline (pH optimum 4·0). Spermidine was oxidized to 1,3-diaminopropane and 1-pyrroline (pH optimum 6·6). At their respective pH optima, spermine is oxidized about 30 times faster than spermidine. Hydrogen peroxide was formed in the course of the polyamine oxidation. The enzyme was not sensitive to several copper chelating reagents but 2-hydroxyethylhydrazine caused 50% inhibition at 5 × 10−4 M. The enzyme was also present in particles in the roots of barley seedlings and in extracts of the leaves of oats, maize, rye and wheat.  相似文献   

6.
Arginine decarboxylase activity in the shoots of seedlings was high in oats, intermediate in barley and low in rice, maize, wheat and rye. After partial purification, the arginine decarboxylase from the shoots of potassium deficient oat seedlings was separated into two fractions, A (MW 195 000) and B (MW 118 000), by gel chromatography. On gel electrophoresis, the mobilities of these fractions were respectively 0.12 and 0.55 relative to bromophenol blue at pH 9.5. Fraction A was twice as active as fraction B in extracts of seedlings grown with both normal and potassium deficient nutrition, despite the greater activity ( × 5) of the potassium deficient plants. The properties of the two fractions were similar with respect to pH optimum (7–7.5), Km (3 × 10 ?5M) and the effect of inhibitors. Fraction A was purified to apparent homogeneity by DEAE-cellulose chromatography. The enzyme was specific for l-arginine and it was strongly inhibited by NSD 1055, d-arginine and canavanine. Mercaptoethanol and dithiothreitol stimulated the enzyme by ca 50% and p-chloromercuribenzoate was an inhibitor. Pyridoxal phosphate stimulated activity by ca 30% and EDTA stimulated activity by 30%. Ca2+ and Mg2+ inhibited the enzyme by 50% at ca 20 mM. Putrescine and the polyamines showed only moderate inhibition at 10 mM, but agmatine reduced activity to 30% at this concentration.  相似文献   

7.
The pH optimum for the stability of the barley leaf polyamine oxidase is 4.8, which is also the pH optimum for its activity with spermine as substrate. Zonal centrifugation indicates that the enzyme is associated with a particle which is slightly more dense than chloroplasts, and the peak of activity corresponds with the peak of nucleic acid. Neither DNase nor RNase released the enzyme from the particles, despite the hydrolysis of more than 50% of the nucleic acid. The enzyme from the leaves of oat seedlings grown in the dark was purified 900-fold. Mg2+ and Ca2+ inhibited both barley and oat enzymes by ca 50% at 50 mM. The optimum pH for both spermine and spermidine oxidation by the oat enzyme was 6.5. The MW of the enzyme from both sources determined by gel chromatography was ca 85 000.  相似文献   

8.
Polyamine oxidase of maize shoots purified 10-fold had a pH optimum of 6·3 with spermidine as substrate, and Km of 6 × 10?4 M. The enzyme was inhibited by the acridine compounds quinacrine, 6,9-diamino-2-ethoxyacridine and acriflavin, but carbonyl reagents, typical thiol inhibitors and copper-binding agents were without effect. Inhibition by quinacrine was reversed by FMN and FAD. Furthermore, about 50 % of the activity of the apoenzyme was restored by the addition of FAD, but not by FMN or riboflavin, indicating that the maize polyamine oxidase is an FAD-dependent flavoprotein.  相似文献   

9.
盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响   总被引:11,自引:3,他引:11  
以两个不同抗盐性黄瓜品种为试材,采用营养液水培法,研究了NaCl胁迫对幼苗根系生长和多胺代谢的影响.结果表明:盐胁迫下黄瓜幼苗根系生长受抑制,膜脂过氧化和电解质渗漏升高,而弱抗盐品种‘津春2号'的变化幅度大于抗盐品种‘长春密刺';盐胁迫下‘长春密刺'根系精氨酸脱羧酶、鸟氨酸脱羧酶和S-腺苷蛋氨酸脱羧酶活性升高幅度均大于‘津春2号',其最高值分别比对照增加了149.3%、60.1%、69.4%和118.6%、56.2%、50.6%;'长春密刺'多胺氧化酶活性升高幅度小于‘津春2号',而二胺氧化酶活性仅在‘长春密刺'中增加.'长春密刺'根系游离态亚精胺和精胺、结合态和束缚态多胺含量均显著增加,而‘津春2号'根系游离态腐胺含量显著增加.表明黄瓜根系中较高的游离态亚精胺和精胺、结合态和束缚态多胺以及较低的游离态腐胺含量有利于提高幼苗对盐胁迫逆境的适应能力.  相似文献   

10.
It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N 1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N 1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3–20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid ( 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity ( 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.Abbreviations DAO diamine oxidase - DFMO DL--difluoromethylornithine - DP 1-3-diaminopropane - IC50 50% inhibition concentration - MAO monoamine oxidase - N 1-ACSP; N 1-acetylspermine - N1-ACSPD N 1-acetylspermidine - N 8-ACSPD N 8-acetylspermidine - ODC ornithine decarboxylase - PAO(s) polyamine oxidase(s) - PUT putrescine - SP spermine - SPD spermidine  相似文献   

11.
Diamine oxidase of rice seedlings has been purified 1800-fold to homogeneity. The MW of the enzyme as determined by Sephadex G-100 gel filtration was 12.3 × 104 and the enzyme contained two identical subunits each with a MW of 6.12 × 104. The optimal temperature and pH for the enzyme were 30° and 7.5 respectively and the enzyme followed typical Michaelis kinetics with a Km of 10?5 M. Each enzyme molecule contained four molecules of FAD.  相似文献   

12.
Induction of polyphenol oxidase in germinating wheat seeds   总被引:1,自引:0,他引:1  
A 50- and 100-fold increase in the o-diphenolase activity was observed respectively in excised coleoptiles and roots of wheat seedlings after germination for 4–5 days. This increased activity was associated with the appearance of several new multiple forms of o-diphenolase on acrylamide gels. The embryo-less half-seeds dissected from seedlings, however, revealed only a three-fold increase in o-diphenolase activity, without any alteration in the pattern of multiple forms. Cycloheximide substantially inhibited the activity and appearance of multiple forms of o-diphenolase, whereas actinomycin D failed to bring about a similar response. Protein synthesis was probably necessary for the formation of new multiple forms. Unlike o-diphenolase activity which was present in all parts of the seedling, the monophenolase activity was confined to the embryo-less endosperm. A 5–7-fold increase in monophenolase activity was observed in the embryo-less half-seed dissected from the seedling. A single broad band of monophenolase developed on acrylamide gels. This persisted during the early period of seed germination without addition of new multiple forms. No inhibition of monophenolase activity was observed in seeds treated with cycloheximide or actinomycin D.  相似文献   

13.
A diamine oxidase (DAO) (EC 1.4.3.6) has been purified to homogeneity from lentil seedlings. The purified protein has a MW of 154 000 and is composed of two apparently identical subunits. It contains two CU2+ atoms and one carbonyl-like group per mol. The purified enzyme is pink-red in concentrated solution and shows a broad, well-defined, absorption band in the visible region centered at 498 nm. The ESR spectrum is typical of Cu2+ in a tetragonal symmetry. The enzyme oxidizes only aliphatic diamines and spermidine with formation of the corresponding aldehydes, hydrogen peroxide and ammonia. Putrescine and cadaverine are oxidized most rapidly and the oxidation rate decreases when longer diamines are tested.  相似文献   

14.
N1-Monoacetylspermine, N1,N12-diacetylspermine and N1-monoacetylspermidine were found to be good substrates for rat liver polyamine oxidase, but not for rat liver mitochondrial monoamine oxidase. N8-Monoacetylspermidine, monoacetylcadaverine, monoacetylputrescine and monoacetyl-1,3-diaminopropane were oxidized by the monoamine oxidase when the substrate concentration was 10.0 mM, but not by the polyamine oxidase. All the acetylpolyamines except N1,N12-diacetylspermine were also oxidized by hog kidney diamine oxidase although their affinities for the oxidase appeared low. The present data suggest that acetylpolyamines are not easily metabolized in vivo by either monoamine oxidase or diamine oxidase in mammalian tissues although N1-monoacetylspermine, N1,N12-diacetylspermine and N1-monoacetylspermidine are attacked by polyamine oxidase.  相似文献   

15.
Polyamine oxidase (PAO, EC 1.5.3.3) activity and polyamine content in the cell wall and soluble fractions obtained from embryos, endosperms and shoots and roots of etiolated or green seedlings of maize ( Zea mays L. cv. WF9) during the first 7 days of germination were investigated. Polyamine content was also determined in the trichloroacetic acid-soluble (free polyamines) and trichloroacetic acid insoluble (bound polyamines) fraction obtained from the same tissues. PAO activity, determined by the radiometric method based on the recovery of the labelled reaction product 1-pyrroline, was mostly localized in the cell wall fraction. The activity was very low in embryos and endosperms and present in traces in roots. In etiolated shoots PAO activity increased sharply, while in green shoots it was low and increased slowly. No polyamines were found in the cell wall fraction and only putrescine was detected in the soluble fraction, with the exception of the embryo, where spermidine and spermine were also present. In the TCA-soluble fraction of embryos, putrescine increased during imbibition, while spermidine and spermine decreased; in the endosperm no relevant changes in polyamines occurred. In the same fraction of green and etiolated seedlings, putrescine increased, giving a peak at days 3–5, while spermidine decreased to very low levels. The amount of bound polyamines was 1–4% of the free ones. The pattern of PAO activity seems to be unrelated to endogenous free polyamine content, which is the same in shoots and roots of etiolated and green seedlings. Enzyme activity, very low in ungerminated seeds, increased continuously during the progression of germination, especially in etiolated shoots, indicating a possible involvement in cell wall formation.  相似文献   

16.
刘畅  于涛  高战武  于达夫  蔺吉祥 《生态学报》2016,36(21):6786-6793
为明确燕麦幼苗对松嫩盐碱草地3种主要盐分Na Cl、Na HCO_3和Na_2CO_3的适应机制,设定不同浓度梯度(48—144 mmol/L)的胁迫处理液,测定燕麦幼苗的生长与生理指标变化。结果表明,尽管试验设定的Na Cl浓度并不影响幼苗的存活率,但在各组胁迫处理下,随着浓度的增加,燕麦幼苗的分蘖数、植株高度、茎叶与根系的生物量均呈下降趋势,下降幅度为Na_2CO_3Na HCO_3Na Cl。另外,与Na Cl胁迫相比,Na_2CO_3与Na HCO_3胁迫下茎叶与根中积累了更多的有毒Na~+,同时K~+下降幅度也更大,并且根系中含有更高的Na~+与更低的K~+以及更高的Na~+/K~+。在Na Cl胁迫下,燕麦幼苗积累大量的无机Cl~-和脯氨酸来维持细胞内的渗透与离子平衡,而Na HCO_3与Na_2CO_3胁迫造成了燕麦幼苗体内阴离子的亏缺,此时幼苗主要通过积累大量的有机酸和更多的脯氨酸来维持渗透与离子平衡。上述结果表明,碱性盐Na_2CO_3与Na HCO_3对植物的胁迫伤害程度大于中性盐Na Cl,并且Na_2CO_3的毒害效应最强,而燕麦幼苗对不同的盐分胁迫伤害也有会产生不同的生理适应策略。  相似文献   

17.
Seven-day-old seedlings of the cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.5 mM solutions of phenols (p-coumaric, ferulic, p-hydroxybenzoic and vanillic acids) as stress factors. The level of free polyamines as well as activities of their catabolic enzymes, i.e. di- and polyamine oxidases (DAO - EC 1.4.34 and PAO - EC 1.4.36), were estimated for the first three hours of the stress. Cucumber roots were found to have only the presence of putrescine and spermidine. Root treatment with phenols caused a violent decrease of both amine contents during the first hour of the stress. These changes were associated with the increase of amine oxidase activity.  相似文献   

18.
The apparent absence of diamine oxidase in extracts of cotyledon of germinating groundnut seeds is due to the presence of a natural inhibitor. The inhibitor was associated with the lipid in the upper layer obtained on centrifugation of the cotyledon extract. It was non-dialysable, thermolabile and was inactivated by TCA and Triton X-100. The inhibitor was detected in the cotyledon extracts from early stages of seed development and was present up to 20 days after germination.  相似文献   

19.
Cytokinin catabolism and cytokinin oxidase   总被引:1,自引:0,他引:1  
Cytokinin oxidase has been highly purified from mature Zea mays kernels. Adenine has been unambiguously identified, by HPLC co-chromatography, UV a  相似文献   

20.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号