首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FAD-containing monoamine oxidase (MAO; EC 1.4.3.4) oxidises monoamines to their corresponding aldehydes, H2O2, and NH3. It has been purified to homogeneity in mammals, but to our knowledge, there have been no reports of the enzyme in plants. MAO activity was detected in Avena sativa seedlings during germination using benzylamine as substrate. The enzyme was purified to homogeneity (as assessed by native PAGE) by Sephadex G-25, DEAE Sephacel, hydroxyapatite, Mono Q, and TSK-GEL column chromatographies. The molecular mass estimated by gel filtration using the TSK-GEL column was 220?kDa. SDS-PAGE yielded four distinct protein bands of 78, 58, 55, and 32?kDa molecular masses. The pI value of the enzyme was 6.3. The enzyme showed high substrate specificity for an endogenous amine, phenethylamine, which was oxidised to phenylacetaldehde, but not for ethylamine, propylamine, butylamine, pentylamine, dopamine, serotonin, tryptamine, or tyramine. The K m values for benzylamine and phenethylamine were 2.7?×?10?4 and 7.1?×?10?4?M, respectively. Enzyme activity was not inhibited by pargyline, clorgyline, semicarbazide, or Na-diethyldithiocarbamate. Benzaldehyde, the product of benzylamine oxidation, exhibited strong competitive inhibition of enzyme activity with a Ki of 3???M. FAD was identified by ODS-column chromatography as an enzyme cofactor. The enzyme contained 2?mol of FAD per 220,000?g of enzyme.  相似文献   

2.
An inducible enzyme catalysing the hydrolysis of (+)-usnic acid to (+)-2-desacetylusnic acid and acetic acid has been purified 150-fold from the mycelium of Mortierella isabellina grown in the presence of (+)-usnic acid. Purification was achieved by treatment with protamine sulfate, (NH4)2SO4 fractionation, negative adsorption on alumina Cγ gel and hydroxylapatite followed by chromatography on DEAE-cellulose and Sephadex G-200. The elution pattern from a Sephadex G-200 column indicated a MW of ca 7.6 × 104 for the enzyme. The apparent Km value for (+)-usnic acid at the pH optimum (pH 7) was 4.0 × 10?5 M. The enzyme was specific for (+)-usnic acid and inactive towards (?)-usnic acid, (+)-isousnic acid or certain phloracetophenone derivatives. Its activity was enhanced in the presence of divalent metal ions such as Co2+, Ni2+, Mn2+, Mg2+ and Zn2+.  相似文献   

3.
An inducible l-mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of l-mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with l-mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10?4, 1.9 × 10?4, and 4.7 × 10?5m, respectively. The enzyme is very specific for l-mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.  相似文献   

4.
An α-amylase which produces maltohexaose as the main product from strach was found in the culture filtrate of Bacillus circulans G-6 which was isolated from soil and identified by the author.

The enzyme was purified by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 column chromatography. The purified enzyme was homogeneous on disc electrophoresis. The optimum pH and temperature of the enzyme were around pH 8.0 and around 60°C, respectively. The enzyme was stable in the range of pH 5–10. Metal ions such as Hg2+, Cu2+, Zn2+, Fe2+ and Co2+ inhibited the enzyme activity. The molecular weight was about 76,000. The yield of maltohexaose from soluble starch of DE (dextrose equivalent*) 1.8-12.6 was about 30%, and the combined action of the enzyme and pullulanase or isoamylase increased the yield of maltohexaose.  相似文献   

5.
An oxalate oxidase found in the 15 000 g supernatant of 10-day-old sorghum leaves exhibited a pH optimum of 5 and a temperature optimum of 45° and was unaffected by Na+. The enzyme activity remained linear up to 10 min and the apparent Km for oxalate was 2.4 × 10?5 M. The enzyme activity was strongly inhibited by sodium dithionite and α,α′-dipyridyl. Inhibition by the latter was specifically reversed by Fe2+. The activity of the dialysed enzyme was restored by the addition of Fe2+ and FAD. Inhibition of the enzyme by iodoacetate, p-chloromercuribenzoate and N-methylmaleimide revealed that SH groups at the active site are essential.  相似文献   

6.
β-Galactosidase is a metal-activated enzyme, which breaks down the glucosidic bond of lactose and produces glucose and galactose. Among several commercial applications, preparation of lactose-free milk has gained special attention. The present objective is to demonstrate the activity kinetics of β-galactosidase purified from a non-pathogenic bacterium Arthrobacter oxydans SB. The enzyme was purified by DEAE-cellulose and Sephadex G-100 column chromatography. The purity of the protein was checked by high-performance liquid chromatography (HPLC). The purified enzyme of molecular weight ~ 95 kDa exhibited specific activity of 137.7 U mg?1 protein with a purification of 11.22-fold and yield 12.42 %. The exact molecular weight (95.7 kDa) of the purified protein was determined by MALDI-TOF. Previously, most of the studies have used Mg+2 as a cofactor of β- galactosidase. In this present investigation, we have checked the kinetic behavior of the purified β-galactosidase in presence of several bivalent metals. Lowest Km with highest substrate (ortho-nitrophenyl-β-galactoside or ONPG) affinity was measured in presence of Ca2+ (42.45 µM ONPG). However, our results demonstrated that Vmax was maximum in presence of Mn+2 (55.98 µM ONP produced mg?1 protein min?1), followed by Fe+2, Zn+2, Mg+2, Cu+2 and Ca+2. A large number of investigations reported Mg+2 as potential co factor for β-galacosidase. However, β-galactosidase obtained from Arthrobacter oxydans SB has better activity in the presence of Mn+2 or Fe2+.  相似文献   

7.
The present investigation entails the immobilisation and characterisation of Escherichia coli MO1-derived carbonic anhydrase (CA) and its influence on the transformation of CO2 to CaCO3. CA was purified from MO1 using a combination of Sephadex G-75 and DEAE cellulose column chromatography, resulting in 4.64-fold purification. The purified CA was immobilised in chitosan-alginate polyelectrolyte complex (C-A PEC) with an immobilisation potential of 94.5 %. Both the immobilised and free forms of the enzyme were most active and stable at pH 8.2 and at 37 °C. The K m and V max of the immobilised enzyme were found to be 19.12 mM and 416.66 μmol min?1 mg?1, respectively; whereas, the K m and V max of free enzyme were 18.26 mM and 434.78 μmol min?1 mg?1, respectively. The presence of metal ions such as Cu2+, Fe2+, and Mg2+ stimulated the enzyme activity. Immobilised CA showed higher storage stability and maintained its catalytic efficiency after repeated operational cycles. Furthermore, both forms of the enzyme were tested for targeted application of the carbonation reaction to convert CO2 to CaCO3. The amounts of CaCO3 precipitated over free and immobilised CA were 267 and 253 mg/mg of enzyme, respectively. The results of this study show that immobilised CA in chitosan-alginate beads can be useful for CO2 sequestration by the biomimetic route.  相似文献   

8.
An extracellular proteinase from Pseudomonas fluorescens, strain AFT 36, was isolated to homogeneity by chromatography on DEAE-cellulose and Sephadex G-150; a 230-fold increase in specific activity with a recovery of 53% was obtained. The enzyme was optimally active at pH 6.5 and 45°C; activity declined rapidly at higher temperatures but significant activity persisted down to 4°C. Activity was strongly inhibited by 10?3 M EDTA and was partially restored by addition of Zn2+, Ca2+ or Co2+. The Km values on methylated casein and sodium caseinate were 18.2 and 7.1 mg/ml, respectively. The enzyme was very labile in phosphate buffer and in a milk salts buffer at 55°C but was very stable in the latter at more than 80°C.  相似文献   

9.
The somatic extract of L. intestinalis plerocercoids reveals hydrolytic activity against N-Benzoyl-l-tyrosine ethyl ester (BTEE) and Azocoll, and inactivates the esterolysis by mammalian trypsin and chymotripsin. The proteolytic enzyme activity and the inhibitory effect were completely separated by Sephadex G-100 column chromatography. Gel chromatography of the somatic extract revealed two peaks of proteolytic activity : one is bound to macromolecular substances, the other appears to be in free form and has a molecular weight of approx 60,000–65,000. The proteolytic activity showed the following characteristics : Tris-HCl buffer provided the highest activity against BTEE, the pH optimum was 7·4–7·8; the enzyme was activated by 10?5m-Ca2+, Mg2+ or Mn2+, it was inhibited by 10?5m-Cu2+, but not by 10?5m-Zn2+. 0.001% soybean trypsin inhibitor, 2 × 10?3m-EDTA, 1 mm-tosyl-l-phenylalanyl chloromethane, 1000 KIU/ml Trasylol did not inhibit the proteolytic activity, but it was inhibited by 1 mm-phenylmethyl-sulphonyl fluoride. The enzyme activity completely ceased upon 5 % TCA treatment or incubation at 56°C for 30 min. The trypsin and chyrnotrypsin inhibitor activities were eluted from the Sephadex G-100 column in a single peak with an estimated molecular weight of 6700–7200. The inhibitory effect was not sensitive to pH changes, and treatment by 5% TCA or incubation at 80°C for 15 min was ineffective. The proteolytic activity of plerocercoid extract was not effected ‘in vitro’ by the inhibitors isolated from this parasite.  相似文献   

10.
TYROSINE HYDROXYLASE IN BOVINE CAUDATE NUCLEUS   总被引:7,自引:4,他引:3  
Approximately 80 per cent of tyrosine hydroxylase activity in bovine caudate nucleus was particle-bound. The rest of the activity was found in the soluble fraction. The enzyme activity in crude tissue preparations was inhibited, probably by the presence of endogenous inhibitors. Dilution of crude tissue preparations such as the crude mitochondrial fraction caused an increase in the specific activity. The particle-bound enzyme was solubilized by incubation with trypsin. The presence of deoxycholate increased the degree of solubilization. The activity of the solubilized enzyme from the washed particles was also inhibited, but the subsequent purification by ammonium sulphate could eliminate the inhibition. The solubilized enzyme was partially purified by ammonium sulphate fractionation and Sephadex G-150 chromatography. A tetrahydropteridine and ferrous ion were required as cofactors for the partially purified enzyme. Among various divalent cations, only ferrous ion could activate the partially purified enzyme. The enzyme was inhibited by L-α-methyl-p-tyrosine and catecholamines such as dopamine. The optimum pH was found between 5.5 and 6.0. Km values toward tyrosine, 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine and Fe2+, were approximately 5 × 10?5 M, 1 × 10?4 M and 4 × 10?4 M, respectively.  相似文献   

11.
《Phytochemistry》1986,25(7):1545-1551
The extraction, partial purification and properties of a 3′,5′-cyclic nucleotide phosphodiesterase from lettuce cotyledons is described. Purification involved fractional precipation with (NH4)2SO4, chromatography on Sephadex G-200, affinity chromatography on Affi-Gel Blue and non-denaturing polyacrylamide gel electrophoresis. The behaviour of the final enzyme preparation on SDS-polyacrylamide gel electrophoresis was examined and inidcated an M, of ca 62 000. The enzyme from 3′,5′-cyclic nucleotide phosphodiesterases previously isolated from plant tissues in that it exhibits activity towards pyrimidine as well as purine cyclic nucleotides. Furthermore, it hydrolyses cyclic CMP at a comparable rate to that with which it hydrolyses cyclic AMP and cyclic GMP. Both 3′- and 5′-AMP were released, with the 5′-nucleotide being the major product. Whereas the Km with all three substrates remained constant during the purification procedure, Vmax with cyclic AMP was lower than that for cyclic CMP but increased as purification proceeded. The effects were examined of a range of di- and trivalent metal ions on the enzyme activity. Fe3+ significantly stimulated the activity, more so when cyclic GMP was the substrate. Cu2+ inhibited the activity.  相似文献   

12.
NAD(P)H dehydrogenase was purified approximately 480-fold from Saccharomyces cerevisiae with 6.5% activity yield. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 40,000–44,000 by gel filtration on Sephadex G-150 column chromatography and SDS-polyacrylamide gel electrophoresis. The Km values for NADPH and NADH were 7.3 μM and 0.1 mM, respectively. The activity of the enzyme increased approximately 4-fold with Cu2+. FAD, FMN and cytochrome c were not effective as electron acceptors, although Fe(CN)63− was slightly effective. NADH generated by the reaction of lactaldehyde dehydrogenase in the glycolytic methylglyoxal pathway will be reoxidized by NAD(P)H dehydrogenase. NAD(P)H dehydrogenase thus may contribute to the reduction/oxidation system in the glycolytic methylglyoxal pathway to maintain the flux of methylglyoxal to lactic acid via lactaldehyde.  相似文献   

13.
Carbonic anhydrase enzyme, one of the fastest known enzymes, remains largely unexplored in prokaryotes when compared to its mammalian counterparts despite its ubiquity. In this study, the enzyme has been purified from Bacillus subtilis SA3 using sequential Sephadex G-75 chromatography, DEAE cellulose chromatography, and sepharose-4B-L-tyrosinesulphanilamide affinity chromatography and characterized to provide additional insights into its properties. The apparent molecular mass of carbonic anhydrase obtained by SDS-PAGE was found to be approximately 37 kDa. Isoelectric focusing of the purified enzyme revealed an isoelectric point (pI) of around 6.1 when compared with marker. The presence of metal ions such as Zn2+, Co2+, Cu2+, Fe3+, Mg2+, and anion SO4 increased enzyme activity while strong inhibition was observed in the presence of Hg2+, Cl, HCO3, and metal chelator EDTA. The optimum pH and temperature for the enzyme were found to be 8.3 and 37°C, respectively. Enzyme kinetics with p-nitrophenyl acetate as substrate at pH 8.3 and 37°C determined the Vmax and Km values of the enzyme to be 714.28 μmol/mg protein/min and 9.09 mM, respectively. The Ki value for acetazolamide was 0.22 mM, compared to 0.099 mM for sulphanilamide. The results from N-terminal amino acid sequencing imply the purified protein is a putative beta-carbonic anhydrase with close similarities to CAs from plants, microorganisms.  相似文献   

14.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0–9.0) and temperature (30–90°C). From the thermal inactivation studies in the range 60–75°C, the half-life (t1/2) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol?1. It showed higher specificity with catechol (Km = 8 mM) as compared to 4-methylcatechol (Km = 10 mM). Among metal ions and reagents tested, Cu2+, Fe2+, Hg2+, Mn2+, Ni2+, protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K+, Na+, Co2+, kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

15.
A gibberellin 2β-hydroxylase has been purified from mature seeds ofPhaseolus vulgaris. The enzyme is of molecular weight 36,000 and has the characteristics of a dioxygenase; the cofactors areα-ketoglu-tarate, Fe2+ and ascorbate, and activity is stimulated by catalase. The Vmax of the enzyme is 6.86 nmole h?1 mg?1, and the Km values for [1,2-3H2]GA1 andα-ketoglutarate are 0.085 μM and 21 μM, respectively. The purified enzyme preparation catalyzes hydroxylation of GA1, GA4, GA9, and GA20 but exhibits a marked preference for the 3-hydroxylated gibberellins as substrate.  相似文献   

16.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

17.
Properties of partially purified NADP-malic enzyme (EC 1.1.1.40) from glumes of developing wheat grains were examined. The pH optimum for enzyme activity was influenced by malate and shifted from 7.3 to 7.6 when the concentration of malate was increased from 2 to 10 mM. The Km values, at pH 7.3, for various substrates were: malate, 0.76 mM; NADP, 20 μM and Mn2+, 0.06 mM. The requirement of Mn2+ cation for enzyme activity could be partially replaced by Mg2+ or Co2+. Mn2+ dependent enzyme activity was inhibited by Pb2+, Ni2+, Hg2+, Zn2+, Cd2+, Al3+ and Fe3+. During the reaction, substrate molecules (malate and NADP) reacted with enzyme sequentially. Activity of malic enzyme was inhibited by products of the reaction viz pyruvate, HCO3? and NADPH2. At a limiting fixed concentration of NADP, these products induced a positive cooperative response to increasing concentrations of malate.  相似文献   

18.
The gene xylBADP1 from Acinetobacter baylyi ADP1 (gene annotation number ACIAD1578), coding for a putative aryl alcohol dehydrogenase, was heterologously expressed in Escherichia coli BL21(DE3). The respective aryl alcohol dehydrogenase was purified by fast protein liquid chromatography to apparent electrophoretic homogeneity. The predicted molecular weight of 39,500 per subunit was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. According to the native Mw as determined by gel filtration, the enzyme forms dimers and therefore seems to be XylB related. The enzyme showed the highest activity at 40°C. For both the reduction and the oxidation reactions, the pH for optimum activity was 6.5. The enzyme was NADH dependent and able to reduce medium- to long-chain n-alkylaldehydes, methyl-branched aldehydes, and aromatic aldehydes, with benzaldehyde yielding the highest activity. The oxidation reaction with the corresponding alcohols showed only 2.2% of the reduction activity, with coniferyl alcohol yielding the highest activity. Maximum activities for the reduction and the oxidation reaction were 104.5 and 2.3 U mg−1 of protein, respectively. The enzyme activity was affected by low concentrations of Ag+ and Hg2+ and high concentrations of Cu2+, Zn2+, and Fe2+. The gene xylBADP1 seems to be expressed constitutively and an involvement in coniferyl alcohol degradation is suggested. However, the enzyme is most probably not involved in the degradation of benzyl alcohol, anisalcohol, salicyl alcohol, vanillyl alcohol, cinnamyl alcohol, or aliphatic and isoprenoid alcohols.  相似文献   

19.
The bark beetle Dendroctonus armandi is able to kill living Pinus armandi and has caused serious damage to pine forest in Northern China. As the most important symbiotic fungus of D. armandi, Leptographium qinlingensis plays an important role in the invasion process of the bark beetle. The laccase secreted by it are involved in lignin degradation to provide utilizable nutrition for D. armandi, and catalyze some biochemical reactions, causing the damages of tree tissue. In present study, the extracellular laccase of L. qinlingensis was purified by using the ammonium sulfate precipitation and DEAE-cellulose (DE-52) column chromatography. Furthermore, the effects of temperature, pH value and metal ions on it were investigated and characterized. The purified enzyme exerted its optimal activity with guaiacol. The catalytic efficiencies Km and Vmax determined for substrate guaiacol were 15.4 μM and 372.9 IU mg?1, respectively. The optimum pH and temperature for the purified enzyme was 4.4 and 45 °C, respectively, with the highest enzyme specific activity of 7,000 IU mg?1. Moreover, the metal ions, Co2+, Mn2+, Ca2+, Mg2+, Fe2+ and Cd2+, especially Hg2+, showed significantly inhibition effects on its activity. To understand the characteristics of this laccase might provide an opportunity and theoretical basis to promote integrated pest management of D. armandi.  相似文献   

20.
A highly active amide hydrolase (DamH) was purified from Delftia sp. T3-6 using ammonium sulfate precipitation, diethylaminoethyl anion exchange, hydrophobic interaction chromatography, and Sephadex G-200 gel filtration. The molecular mass of the purified enzyme was estimated to be 32 kDa by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis. The sequence of the N-terminal 15 amino acid residues was determined to be Gly-Thr-Ser-Pro-Gln-Ser-Asp-Phe-Leu-Arg-Ala-Leu-Phe-Gln-Ser. Based on the N-terminal sequence and results of peptide mass fingerprints, the gene (damH) was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). DamH was a bifunctional hydrolase showing activity to amide and ester bonds. The specific activities of recombinant DamH were 5,036 U/mg for 2′-methyl-6′-ethyl-2- chloroacetanilide (CMEPA) (amide hydrolase function) and 612 U/mg for 4-nitrophenyl acetate (esterase function). The optimum substrate of DamH was CMEPA, with K m and k cat values of 0.197 mM and 2,804.32 s?1, respectively. DamH could also hydrolyze esters such as 4-nitrophenyl acetate, glycerol tributyrate, and caprolactone. The optimal pH and temperature for recombinant DamH were 6.5 and 35 °C, respectively; the enzyme was activated by Mn2+ and inhibited by Cu2+, Zn2+, Ni2+, and Fe2+. DamH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by ethylenediaminetetraacetic acid and dimethyl sulfoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号