首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

3.
1. At 0-4 degrees C mitochondrial ribosomes (55S) dissociate into 39S and 29S subunits after exposure to 300mm-K(+) in the presence of 3.0mm-Mg(2+). When these subunits are placed in a medium containing a lower concentration of K(+) ions (25mm), approx. 75% of the subparticles recombine giving 55S monomers. 2. After negative staining the large subunits (20.3nm width) usually show a roundish profile, whereas the small subunits (12nm width) show an elongated, often bipartite, profile. The dimensions of the 55S ribosomes are 25.5nmx20.0nmx21.0nm, indicating a volume ratio of mitochondrial to cytosol ribosomes of 1:1.5. 3. The 39S and 29S subunits obtained in high-salt media at 0-4 degrees C have a buoyant density of 1.45g/cm(3); from the rRNA content calculated from buoyant density and from the rRNA molecular weights it is confirmed that the two subparticles have weights of 2.0x10(6) daltons and 1.20x10(6) daltons; the weights of the two subunits of cytosol ribosomes are 2.67x10(6) and 1.30x10(6) daltons. 4. The validity of the isodensity-equilibrium-centrifugation methods used to calculate the chemical composition of ribosomes was reinvestigated; it is confirmed that (a) reaction of ribosomal subunits with 6.0% (v/v) formaldehyde at 0 degrees C is sufficient to fix the particles, so that they remain essentially stable after exposure to dodecyl sulphate or centrifugation in CsCl, and (b) the partial specific volume of ribosomal subunits is a simple additive function of the partial specific volumes of RNA and protein. The RNA content is linearly related to buoyant density by the equation RNA (% by wt.)=349.5-(471.2x1/rho(CsCl)), where 1/rho(CsCl)=[unk](RNP) (partial specific volume of ribonucleoprotein). 5. The nucleotide compositions of the two subunit rRNA species of mitochondrial ribosomes from rodents (42% and 43% G+C) are distinctly different from those of cytoplasmic ribosomes.  相似文献   

4.
The colorless alga Polytoma obtusum has been found to possess leucoplasts, and two kinds of ribosomes with sedimentation values of 73S and 79S. The ribosomal RNA (rRNA) of the 73S but not the 79S ribosomes was shown to hybridize with the leucoplast DNA (rho - 1.682 g/ml). Nuclear DNA of Polytoma (rho = 1.711) showed specific hybridization with rRNA from the 79S ribosomes. Saturation hybridization indicated that only one copy of the rRNA cistrons was present per leucoplast genome, with an average buoyant density of rho = 1.700. On the other hand, about 750 copies of the cytoplasmic rRNA cistrons were present per nuclear genome with a density of rho = 1.709. Heterologous hybridization studies with Chlamydomonas reinhardtii rRNAs showed an estimated 80% homology between the two cytoplasmic rRNAs, but only a 50% homology between chloroplast and leucoplast rRNAs of the two species. We conclude that the leucoplasts of Polytoma derive from chloroplasts of a Chlamydomonas-like ancestor, but that the leucoplast rRNA cistrons have diverged in evolution more extensively than the cistrons for cytoplasmic rRNA.  相似文献   

5.
F W Miller  J Ilan 《Parasitology》1978,77(3):345-365
Ribosomes and high molecular weight ribosomal ribonucleic acid (rRNA) from the blood stages of Plasmodium berghei parasites were studied in preparations free from host ribosome contamination. Purified malarial ribosomes were isolated in high yield from a population of ultrastructurally intact, viable parasites by hypertonic lysis with Triton X-100 and differential centrifugation. These ribosomes were shown to be derived from active polysomes and could be dissociated into subunits by puromycin-0.5 M KCl treatment. Malarial rRNA extracted from purified 40S and 60S ribosomal subunits was characterized by electrophoretic, sedimentation and base ratio analyses. Like certain other protozoa, the P. berghei 40S ribosomal subunit possessed an exceptionally large RNA species (mol. wt 0.9 X 10(6), while RNA isolated from the parasite's 60S subunit (mol. wt 1.5 X 10(6)) was specifically 'nicked' to produce one large component (mol.wt 1.2 X 10(6)) and one small component (mol.wt 0.3 X 10(6)) in equimolar quantities. These rRNA's migrate identically on polyacrylamide gels after heating to 63 degrees C for 5 min or under denaturing conditions in the presence of formamide, indicating an absence of aggregation and non-specific degradation of the rRNA species. Base composition studies showed P. berghei rRNA to be low in guanosine and cytosine content, as is the case for protozoa generally.  相似文献   

6.
O'Brien TW 《Gene》2002,286(1):73-79
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.  相似文献   

7.
In the present study, mitochondrial ribosomes of the nematode Ascaris suum were isolated and their physiochemical properties were compared to ribosomes of Escherichia coli. The sedimentation coefficient and buoyant density of A. suum mitochondrial ribosomes were determined. The sedimentation coefficient of the intact monosome was about 55 S. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.40 g/cm(3), which suggests that the nematode mitoribosomes have a much higher protein composition than other mitoribosomes. The diffusion coefficients obtained from dynamic light scattering measurements were (1.48 +/- 0.04) x 10(-)(7) cm(2) s(-)(1) for 55 S mitoribosomes and (1.74 +/- 0.04) x 10(-)(7) cm(2) s(-)(1) for the 70 S E. coli monosome. The diameter of mitoribosomes was measured by dynamic light-scattering analysis and electron microscopy. Though the nematode mitoribosome has a larger size than the bacterial ribosome, it does not differ significantly in size from mammalian mitoribosomes.  相似文献   

8.
Ribosomes from higher-plant mitochondria contain 5S rRNA, in contrast with the mitochondrial ribosomes of animals and fungi, in which such a component has not been detected. In common with the ribosomes of prokaryotes and chloroplasts, higher-plant mitochondrial ribosomes do not appear to contain an RNA equivalent to the 5.8 S rRNA that is found in eukaryoytes hydrogen-bonded to the largest of the cytoplasmic rRNA species.  相似文献   

9.
The S-25 fraction prepared from digitonin washed mitochondria is highly active in poly(U) directed phenylanine incorporation when supplemented with t-RNA. Ribosomes prepared from the S-25 fraction contain 58S monomeric ribosomes and 40S and 29S subunits. Further, these ribosomes contain 21S and 13S rRNA. No detectable cytoplasmic specific ribosomal particles and also rRNA was detected in the mitochondrial S-25 preparation. Ribosomes from mitochondrial S-25 have specific requirement for mitochondrial specific supernatant factors for complete activity.  相似文献   

10.
1. Mitochondrial and cytoplasmic ribosomes of Euglena gracilis differ in their total RNA and protein content. 2. Mitochondrial ribosomes dissociate to subunits at higher Mg(2+) concentrations than do cytoplasmic ribosomes. 3. A separable 5S RNA is obtained from cytoplasmic and chloroplast ribosomes, but not from mitochondrial ribosomes. 4. For protein-synthesizing activity with a natural mRNA, mitochondrial ribosomes use tRNA from any cell compartment and are partly active with supernatant enzymes from cytoplasm. Cytoplasmic ribosomes are partly active with enzymes and tRNA from mitochondria or chloroplasts. 5. Both mitochondrial and cytoplasmic ribosomes show high specificity for the homologous salt-extractable ribosomal fraction for protein-synthesizing activity.  相似文献   

11.
Purified mitochondrial ribosomes (60S) have been isolated from locust flight muscle. Purification could be achieved after lysis of mitochondria in 0.055 M MgCl2. Mitochondrial 60S and cytoplasmic 80S ribosomes were investigated by electron microscopy in tissue sections, in sections of pellets of isolated ribosomes, and by negative staining of ribosomal suspensions. In negatively stained preparations, mitochondrial ribosomes show dimensions of ~270 x 210 x 215 Å; cytoplasmic ribosomes measure ~295 x 245 x 255 Å. From these values a volume ratio of mitochondrial to cytoplasmic ribosomes of 1: 1.5 was estimated. Despite their different sedimentation constants, mitochondrial ribosomes after negative staining show a morphology similar to that of cytoplasmic ribosomes. Both types of particles show bipartite profiles which are interpreted as "frontal views" and "lateral views." In contrast to measurements on negatively stained particles, the diameter of mitochondrial ribosomes in tissue sections is ~130 Å, while the diameter of cytoplasmic ribosomes is ~ 180–200 Å. These data suggest a volume ratio of mitochondrial to cytoplasmic ribosomes of 1:3. Subunits of mitochondrial ribosomes (40S and 25S) were obtained by incubation under dissociating conditions before fixation in glutaraldehyde. After negative staining, mitochondrial large (40S) subunits show rounded profiles with a shallow groove on a flattened side of the profile. Mitochondrial small subunits (25S) display elongated, triangular profiles.  相似文献   

12.
The ribosomes extracted from the mitochondria of the ciliate, Paramecium aurelia, have been shown to sediment at 80S in sucrose gradients. The cytoplasmic ribosomes also sediment at 80S but can be distinguished from their mitochondrial counterparts by a number of criteria. Lowering of the Mg++ concentration, addition of EDTA, or high KCl concentrations results in the dissociation of the cytoplasmic ribosomes into 60S and 40S subunits, whereas the mitochondrial ribosomes dissociate into a single sedimentation class at 55S. Furthermore, the relative sensitivity of the two types of ribosome to dissociating conditions can be distinguished. Electron microscopy of negatively stained 80S particles from both sources has also shown that the two types can be differentiated. The cytoplasmic particles show dimensions of 270 X 220 A whereas the mitochondrial particles are larger (330 X 240 A). In addition, there are several distinctive morphological features. The incorporation of [14C]leucine into nascent polypeptides associated with both mitochondrial and cytoplasmic ribosomes has been shown: the incorporation into cytoplasmic 80S particles is resistant to erythromycin and chloramphenicol but sensitive to cycloheximide, whereas incorporation into the mitochondrial particles is sensitive to erythromycin and chloramphenicol but resistant to cycloheximide.  相似文献   

13.
Ribosomes of Trypanosoma brucei, a parasitic, flagellated protozoan (order Kinetoplastida), were identified on sucrose density gradients by their radioactively labeled nascent peptides. Ultraviolet absorption revealed only cytoplasmic ribosomes which served as internal sedimentation markers. Synthesis on cytoplasmic ribosomes was completely inhibited by cycloheximide. In the presence of this antibiotic, nascent peptides were associated with ribosomes of lower sedimentation coefficient than the cytoplasmic ribosomes. Chloramphenicol blocked synthesis on these ribosomes which are probably the mitochondrial ribosomes. These ribosomes differed from the cytoplasmic ribosomes in several ways. Their sedimentation coefficient was about 72S rather than 84S. The stability of the 72S ribosomes was less sensitive to pancreatic ribonuclease and low Mg-++ concentrations, dissociating below 0.1 mM Mg++. The 72S ribosomes were more sensitive to elevated KCl concentrations, dissociation above 0.25 M. Protein synthetic activity associated with the 72S class of ribosomes was found in trypanosomes grown in rats. Under these conditions no cytochromes or fully active Krebs cycle is present in these cells and respiration is insensitive to cyanide.  相似文献   

14.
Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.  相似文献   

15.
Summary The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40×10–10 per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

16.
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.  相似文献   

17.
Polytoma obtusum has a main band DNA (alpha) with a buoyant density in CsC1 of rho = 1.711 g/ml and a light DNA satellite (beta) with rho = 1.682 g/ml. beta-DNA was substantially enriched in a fraction containing small leucoplast fragments and some mitochondria, which was obtained in a pellet sedimenting between 3,000 g and 5,000 g. A crude mitochondrial pellet was also obtained by sedimenting at 12,000 g to recover particulates remaining in the supernate after 10 min at 5,000 g. This fraction contained a third DNA component (gamma) with rho = 1.714 g/ml. We have concluded that the leucoplasts of P. obtusum contain the beta-DNA (1.6882) and the mitochondria possess the gamma-component (1.714). Two distinct classess of ribosomes were isolated and separated by sucrose density gradients, a major 79S species and a minor species at 75S. The major species possessed the 25S and 18S ribosomal RNA (rRNA), characteristic of cytoplasmic ribosomes, and these particles co-sedimented in sucrose gradients with the 79S cytoplasmic ribosomes of Chlamydomonas reinhardtii. The minor species was present in about 2% of the total ribosomal population but showed an eight-to-ninefold enrichment in the leucoplast pellet, suggesting that it was of organelle origin. These 73S particles had RNA components migrating very closely with the 18S and 25S species of the 79S ribosomes, but the base composition of the rRNA from these two classes of ribosomes was significantly different; the rRNA from the 79S ribosomes had a G+C mole ratio of 50.0%, while the rRNA from the 73S class had a ratio of 47.5%. By comparison, chloroplast ribosomes of C. reinhardtii were found to sediment at 70S and contain rRNA molecules of 23S and 16S, with a G + C content of 51.0%. These findings support the concept that the Polytoma leucoplast possesses characteristic genetic and protein-forming systems.  相似文献   

18.
Ribosomal RNA cistrons in Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena gracilis chloroplasts contain about 12 fg DNA of average density 1.686 g cm?3 and 1.7 pg RNA. The large (1.1 × 106 mol. wt) and small (0.56 × 106 mol. wt) ribosomal RNA components are coded for by separate cistrons, both of which band at a density of 1.696 g cm?3 in a CsCl gradient. About 6% of the chloroplast DNA codes for rRNA indicating that there are 240 cistrons for rRNA in each chloroplast or about three to six cistrons per chloroplast genome. Similar studies with rRNA from cytoplasmic ribosomes indicate that the cistrons for cytoplasmic rRNA band at a density of 1.716 g cm?3, denser than that of the main-band DNA, and that there are 1000 cistrons for cytoplasmic rRNA per cell. Fractionation of E. gracilis DNA on CsCl gradients and subsequent hybridization experiments, as well as melting curves of DNA-RNA hybrids, show that chloroplast rRNA does not anneal specifically with either the cistrons for cytoplasmic rRNA or any DNA in the dark-grown cell, in contrast to those results found in some higher plants.  相似文献   

19.
A mixture of cytoplasmic (80S) and chloroplast (70S) ribosomes from Chlamydomonas reinhardtii was freed of contaminating membranes by sedimentation of the postmitochondrial supernatant through a layer of 1.87 M sucrose. The purified ribosomes were separated into 80S and 70S fractions by centrifugation at a relatively low speed on a 10–40% sucrose gradient containing 25 mM KCl and 5 mM MgCl2. Both the 80S and 70S ribosomes were dissociated into compact subunits by centrifugations in 5–20% high-salt sucrose gradients. The dissociations of both ribosomal species under these conditions were not affected by the addition of puromycin, indicating that the ribosomes as isolated were devoid of nascent chains. Subunits derived from the 80S ribosomes had apparent sedimentation coefficients of 57S and 37S whereas those from the 70S ribosomes had apparent sedimentation coefficients of 50S and 33S. In the presence of polyuridylic acid and cofactors, the 80S and 70S ribosomes incorporated [14C]phenylalanine into material insoluble in hot TCA. The requirements for incorporation were found to be similar to those described for eukaryotic and prokaryotic ribosomes. Experiments with antibiotics showed that the activity of the 80S ribosomes was sensitive to cycloheximide, whereas that of the 70S ribosomes was inhibited by streptomycin. The isolated subunits, when mixed together in an incorporation medium, were also active in the polymerization of phenylalanine in vitro.  相似文献   

20.
Summary The synthesis of virus-specific macromolecules was studied in the reconstituted system containing inner membrane-matrix fraction from rat liver mitochondria and infectious RNA of Venezuelian equine encephalomyelitis (VEE) virus. In a series of preliminary experiments it was shown that isolated submitochondrial fraction was completely free of interfering cytoplasmic contaminations and particularly, of cytoplasmic 80S ribosomes. VEE RNA when added to submitochondrial system caused significant stimulation of RNA and protein synthesis. These processes were resistant to actinomycin D which inhibited profoundly the synthesis of proper mitochondrial macromolecules. The stimulating effect of VEE RNA in experiments with submitochondrial system was about three times higher than that with intact mitochondria. The stimulation of14C-amino acid incorporation increased as a function of incubation time; a certain lag-period being observed. The newly formed virus-specific RNA's and ribonucleoproteins were identified with the aid of sedimentation analysis. In particular, radioactive RNA's with sedimentation coefficients 40S and 26-18S were isolated from the incubated system. These RNA's are similar respectively to VEE genome RNA and doublestranded VEE replicative RNA. In double labelling experiments with3H-uridine and14Camino acids it was shown that VEE RNA induced synthesis of ribonucleoproteins containing newly formed RNA and protein. These RNP possessed sedimentation coefficients 60-80S, 140S and 300S in sucrose gradient and buoyant densities 1.32 and 1.50 g/cm3 in cesium chloride gradients. These properties of ribonucleoproteins synthesized de novo in submitochondrial system are close to those of RNP intermediates of VEE virus reproduction in the infected cells. We concluded that viral RNA could program virus-specific synthesis in the submitochondrial system under conditions that eliminated the contribution of cytoplasmic ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号