首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background, aim, and scope  

One of the most important sources of global carbon dioxide emissions is the combustion of fossil fuels for power generation. Power plants contribute more than 40% of the worldwide anthropogenic CO2 emissions. Therefore, the increased requirements for climate protection are a great challenge for the power producers. In this context a significant increase in power plant efficiency will contribute to reduce specific CO2 emissions. Additionally, CO2 capture and storage (CCS) is receiving considerable attention as a greenhouse gas (GHG) mitigation option. CCS allows continued use of fossil fuels with no or little CO2 emissions given to the atmosphere. This could approve a moderate transition to a low-carbon energy generation over the next decades. Currently, R&D activities in the field of CCS are mainly concentrated on the development of capture techniques, the geological assessment of CO2 storage reservoirs, and on economic aspects. Although first studies on material and energy flows caused by CCS are available, a broader environmental analysis is necessary to show the overall environmental impacts of CCS. The objectives in this paper are coal-based power plants with and without CO2 capture via mono-ethanolamine (MEA) and the comparison of their environmental effects based on life cycle assessment methodology (LCA).  相似文献   

2.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

3.

Purpose

Increases in residential insulation can reduce energy consumption and corresponding life cycle emissions, but with increased manufacturing and transportation of insulation and the associated impacts. In this study, we conducted life cycle analyses of residential insulation and estimated payback periods for carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions, using modeling techniques that account for regional variability in climate, fuel utilization, and marginal power plant emissions.

Methods

We simulated the increased production of insulation and energy savings if all single-family homes in the USA increased insulation levels to the 2012 International Energy Conservation Code, using an energy simulation model (EnergyPlus) applied to a representative set of home templates. We estimated hourly marginal changes in electricity production and emissions using the Avoided Emissions and Generation Tool (AVERT), and we estimated emissions related to direct residential combustion. We determined changes in upstream emissions for both insulation and energy using openLCA and ecoinvent. Payback periods were estimated by pollutant and region. In sensitivity analyses, we considered the importance of marginal versus average power plant emissions, transportation emissions, emission factors for fiberglass insulation, and sensitivity of emission factors to the magnitude of electricity reduction.

Results and discussion

Combining the life cycle emissions associated with both increased insulation manufacturing and decreased energy consumption, the payback period for increased residential insulation is 1.9 years for CO2 (regional range 1.4–2.9), 2.5 years for NOx (regional range 1.8–3.9), and 2.7 years for SO2 (regional range 1.9–4.8). For insulation, transportation emissions are limited in comparison with manufacturing emissions. Emission benefits displayed strong regional patterns consistent with relative demands for heating versus cooling and the dominant fuels used. Payback periods were generally longer using average instead of marginal emissions and were insensitive to the magnitude of electricity savings, which reflects the structure of the intermediate complexity electricity dispatch model.

Conclusions

The life cycle benefits of increased residential insulation greatly exceed the adverse impacts related to increased production across all regions, given insulation lifetimes of multiple decades. The strong regionality in benefits and the influence of a marginal modeling approach reinforce the importance of site-specific attributes and time-dynamic modeling within LCA.
  相似文献   

4.

Purpose

Recently, using a long-run refinery simulation model, Bredeson et al. conclude that the light transportation fuels have roughly the same CO2 footprint. And, any allocation scheme which shows substantial difference between gasoline and diesel CO2 intensities must be seen with caution. The purpose of this paper is to highlight the inappropriate modeling assumptions which lead to these inapplicable conclusions into the current oil refining context.

Methods

From an economic point of view, optimization models are more suitable than simulation tools for providing decision policies. Therefore, we used a calibrated refinery linear programming model to evaluate the impact of varying the gasoline-to-diesel production ratio on the refinery's CO2 emissions and the marginal CO2 intensity of the automotive fuels.

Results and discussion

Contrary to Bredeson et al.'s conclusions, our results reveal that, within a calibrated optimization framework, total and per-product CO2 emissions could be affected by the gasoline-to-diesel production ratio. More precisely, in a gasoline-oriented market, the marginal CO2 footprint of gasoline is significantly higher than diesel, while the opposite result is observed within a diesel-oriented market. These two scenarios could reflect to some extent the American and the European oil refining industry for which policy makers should adopt a different per-product taxation policy.

Conclusions

Any relevant and economic ground CO2 policies for automotive fuels should be sensitive to the environmental consequences associated with their marginal productions. This is especially true in disequilibrium markets where the average and marginal reactions could significantly differ. Optimization models, whose optimal solution is fully driven by marginal signals, show that the refinery's global and/or per-product CO2 emissions could be affected by the gasoline-to-diesel production ratio.  相似文献   

5.
6.

Purpose

This study seeks to answer the question, “Will the Million Trees LA (Million Trees Los Angeles, MTLA) program be a carbon dioxide (CO2) sink or source?” Because there has never been a full accounting of CO2 emissions, it is unclear if urban tree planting initiatives (TPIs) are likely to be effective means for reaching local reduction targets.

Methods

Using surveys, interviews, field sampling, and computer simulation of tree growth and survival over a 40-year time period, we developed the first process-based life cycle inventory of CO2 for a large TPI. CO2 emissions and reductions from storage and avoided emissions from energy savings were simulated for 91,786 trees planted from 2006 to 2010, of which only 30,813 (33.6 %) were estimated to survive.

Results and discussion

The MTLA program was estimated to release 17,048 and 66,360 t of fossil and biogenic CO2 over the 40-year period, respectively. The total amount emitted (83,408 t) was slightly more than the ?77,942 t CO2 that trees were projected to store in their biomass. The MTLA program will be a CO2 sink if projected 40-year-avoided fossil fuel CO2 emissions from energy savings (?101,679 t) and biopower (?1,939 t) are realized. The largest sources of CO2 emissions were mulch decomposition (65.1 %), wood combustion (14.5 %), and irrigation water (9.7 %).

Conclusions

Although trees planted by the MTLA program are likely to be a net CO2 sink, there is ample opportunity to reduce emissions. Examples of these opportunities include selecting drought-tolerant trees and utilizing wood residue to generate electricity rather than producing mulch.  相似文献   

7.
Traditionally, wood fuels, like other bioenergy sources, have been considered carbon neutral because the amount of CO2 released can be offset by CO2 sequestration due to the regrowth of the biomass. Thus, until recently, most studies assigned a global warming potential (GWP) of zero to CO2 generated by the combustion of biomass (biogenic CO2). Moreover, emissions of biogenic CO2 are usually not included in carbon tax and emissions trading schemes. However, there is now increasing awareness of the inadequacy of this way of treating bioenergy, especially bioenergy from boreal forests. Holtsmark (2014) recently quantified the GWP of biogenic CO2 from slow‐growing forests (GWPbio), finding it to be significantly higher than the GWP of fossil CO2 when a 100 year time horizon was applied. Hence, the climate impact seems to be even higher for the combustion of slow‐growing biomass than for the combustion of fossil carbon in a 100 year timeframe. The present study extends the analysis of Holtsmark (2014) in three ways. First, it includes the cooling effects of increased surface reflectivity after harvest (albedo). Second, it includes a comparison with the potential warming impact of fossil fuels, taking the CO2 emissions per unit of energy produced into account. Third, the study links the literature estimating GWPbio and the literature dealing with the carbon debt, and model simulations estimating the payback time of the carbon debt are presented. The conclusion is that, also after these extensions of the analysis, bioenergy from slow‐growing forests usually has a larger climate impact in a 100 year timeframe than fossil oil and gas. Whether bioenergy performs better or worse than coal depends on a number of conditions.  相似文献   

8.

Background, aim and scope  

Tank-to-Wheels (TtW) makes the largest contribution to the total Well-to-Wheels (WtW) energy consumption and greenhouse gas (GHG) emissions from fossil-derived transportation fuels. The most commonly adopted TtW methodologies to obtain vehicle energy consumption, energy efficiency, and GHG emissions used to date all have significant limitations. A new TtW methodology, which combines micro-scale virtual vehicle simulation with macro-scale fleet modeling, is proposed in this paper. The models capabilities are demonstrated using a case study based on data from the passenger car sector in Great Britain.  相似文献   

9.

Background

If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.

Methodology/Main Findings

We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.

Conclusions/Significance

Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.  相似文献   

10.

Purpose

Gold is one of the most significant metals in the world, with use in various sectors including the electronic, health, and fashion industries. The Philippines has the world’s third largest known Au deposits and is ranked 20th in global gold production. Of the country’s annual production, about 80% is from the small-scale gold mining (SSGM) sector. This work estimates the first location-specific life cycle energy use and CO2 emissions of SSGM establishments in the Philippines.

Methods

Process-based LCA was used with functional unit of 100 g Au and observed data from 2010 to 2011 for mining, comminution, recovery, and refining. Four gold production paths were observed in the provinces of Benguet and Camarines Norte, namely, amalgamation, cyanidation with carbon-in-leach (CIL), cyanidation with leaching with zinc, and combination of amalgamation and cyanidation with CIL.

Results and discussion

It was estimated that 3–18 g of Au was extracted for every ton of ore within 57–159 man-hours from mining to refining. Energy use estimates ranged from 3501 to 67,325 MJ/100 g Au, while CO2 emission estimates ranged from 398 to 5340 kg CO2/100 g Au. The combination of amalgamation and cyanidation with CIL processes was the least energy and carbon intensive, while cyanidation with CIL process was the most intensive. Electricity use accounted for 95–100% of total emissions, except in cyanidation with CIL where kerosene accounts for 77% of the total. Since SSGMs contributed 80% of the 40 tons of Au produced in the Philippines in 2014, the SSGM energy use was estimated to be between 1120 and 21,544 TJ and the CO2 emissions to be between 129 and 1726 ktons CO2. Energy estimates are most sensitive to refining process yield and electrical equipment efficiency.

Conclusions

The estimated life cycle emissions rate for SSGM in the Philippines is lower than available estimates of large-scale mining. Notwithstanding, given the sector’s reliance on fossil fuels for its energy needs and the Philippines’ pledge to reduce its CO2 footprint by 70% in 2030, every effort to mitigate energy use and CO2 emission counts. Three main recommendations toward energy consumption and CO2 emissions reduction in SSGMs are proposed: (1) policy to promote technologies that are energy-efficient and processes that maximize gold process yield, (2) effective Minahang Bayan (SSGM mining zone mandated by law) implementation to ensure use of higher-grade ores, and (3) adoption of renewable energy in Minahang Bayans to promote energy independence and mitigate CO2 emissions.
  相似文献   

11.

Purpose

Governments around the world encourage the use of biofuels through fuel standard policies that require the addition of renewable diesel in diesel fuel from fossil fuels. Environmental impact studies of the conversion of biomass to renewable diesel have been conducted, and life cycle assessments (LCA) of the conversion of lignocellulosic biomass to hydrogenation-derived renewable diesel (HDRD) are limited, especially for countries with cold climates like Canada.

Methods

In this study, an LCA was conducted on converting lignocellulosic biomass to HDRD by estimating the well-to-wheel greenhouse gas (GHG) emissions and fossil fuel energy input of the production of biomass and its conversion to HDRD. The approach to conduct this LCA includes defining the goal and scope, compiling a life cycle inventory, conducting a life cycle impact assessment, and executing a life cycle interpretation. All GHG emissions and fossil fuel energy inputs were based on a fast pyrolysis plant capacity of 2000 dry tonnes biomass/day. A functional unit of 1 MJ of HDRD produced was adopted as a common unit for data inputs of the life cycle inventory. To interpret the results, a sensitivity analysis was performed to measure the impact of variables involved, and an uncertainty analysis was performed to assess the confidence of the results.

Results and discussion

The GHG emissions of three feedstocks studied—whole tree (i.e., chips from cutting the whole tree), forest residues (i.e., chips from branches and tops generated from logging operations), and agricultural residues (i.e., straw from wheat and barley)—range from 35.4 to 42.3 g CO2,eq/MJ of HDRD (i.e., lowest for agricultural residue- and highest for forest residue-based HDRD); this is 53.4–61.1 % lower than fossil-based diesel. The net energy ratios range from 1.55 to 1.90 MJ/MJ (i.e., lowest for forest residue- and highest for agricultural residue-based HDRD) for HDRD production. The difference in results among feedstocks is due to differing energy requirements to harvest and pretreat biomass. The energy-intensive hydroprocessing stage is responsible for most of the GHG emissions produced for the entire conversion pathway.

Conclusions

Comparing feedstocks showed the significance of the efficiency in the equipment used and the physical properties of biomass in the production of HDRD. The overall results show the importance of efficiency at the hydroprocessing stage. These findings indicate significant GHG mitigation benefits for the oil refining industry using available lignocellulosic biomass to produce HDRD for transportation fuel.
  相似文献   

12.
To calculate the global warming potential of biogenic carbon dioxide emissions (GWPbCO2) associated with diverting residual biomass to bioenergy use, the decay of annual biogenic carbon pulses into the atmosphere over 100 years was compared between biomass use for energy and its business-as-usual decomposition in agricultural, forestry, or landfill sites. Bioenergy use increased atmospheric CO2 load in all cases, resulting in a 100GWPbCO2 (units of g CO2e/g biomass CO2 released) of 0.003 for the fast-decomposing agricultural residues to 0.029 for the slow, 0.084–0.625 for forest residues, and 0.368–0.975 for landfill lignocellulosic biomass. In comparison, carbon emissions from fossil fuels have a 100GWP of 1.0 g (CO2e/g fossil CO2). The fast decomposition rate and the corresponding low 100GWPbCO2 values of agricultural residues make them a more climate-friendly feedstock for bioenergy production relative to forest residues and landfill lignocellulosic biomass. This study shows that CO2 released from the combustion of bioenergy or biofuels made from residual biomass has a greenhouse gas footprint that should be considered in assessing climate impacts.  相似文献   

13.

Purpose  

Building is one of the main factors of energy use and greenhouse gas emissions. Reducing energy consumption and carbon dioxide (CO2) emission from building is urgent for environmental protection and sustainable development. The objective of this study is to develop a life cycle assessment (LCA) model for an office building in China to assess its energy consumption and CO2 emission, determine the whole life cycle phases, and the significant environmental aspects that contribute most to the impact.  相似文献   

14.

Background and scope  

Attempts to develop adequate allocation methods for CO2 emissions from petroleum products have been reported in the literature. The common features in those studies are the use of energy, mass, and/or market prices as parameters to allocate the emissions to individual products. The crude barrel is changing, as are refinery complexities and the severity of conversion to gasoline or diesel leading to changes in the emissions intensity of refining. This paper estimates the consequences for CO2 emissions at refineries of allowing these parameters to vary.  相似文献   

15.
The climate warming reduction needs an approach based on a regulator element which links the ecological and economical goals. The ecosystem services have become less effective because the production of water and CO2 are faster than recycling it in biomass. The produced water with CO2, during the oxidation of organic carbon thanks to the chemical reduction of oxygen, is often neglected and not mentioned by the scientific community. The water volume that results from the burning of fossil fuels increases annually with CO2 emissions and is higher than thousands of billions of tons. This water increase affects water vapour levels and induces the risk of great floods and sea level rising. We suggest an ecolonomical (ecology and economy) integrative concept based on the use of oxygen, as a regulator, which links the burning of fuels that generate water and fossil CO2 to photosynthesis that regenerates oxygen and biomass essential for our life. The ecolonomical quantitative rule claims that the oxygen users such as transportation services, manufacturers and power plants must pay those who produce it such as forest, agriculture and urban vegetation. The application of this rule should induce the restoring of natural ecosystems and agricultural practices thanks to the link between the urban services and the rural services.  相似文献   

16.
Life cycle analysis of algae biodiesel   总被引:1,自引:0,他引:1  

Background, aim, and scope  

Algae biomass has great promise as a sustainable alternative to conventional transportation fuels. In this study, a well-to-pump life cycle assessment (LCA) was performed to investigate the overall sustainability and net energy balance of an algal biodiesel process. The goal of this LCA was to provide baseline information for the algae biodiesel process.  相似文献   

17.

Purpose

Renewable energy sources, particularly biofuels, are being promoted as possible solutions to address global warming and the depletion of petroleum resources. In this context, biodiesel is a solution to the growing demand for renewable fuels. Beef tallow is the second leading raw material after soybean oil used in biodiesel production in Brazil. Evaluating and addressing the environmental impacts of beef tallow biodiesel are of great importance for its life cycle impact assessment (LCIA).

Methods

Inventory data on tallow and biodiesel production were collected from the literature and from a primary data source provided by a Brazilian biodiesel plant. The modeled system represents the Brazilian reality for the 2005–2015 decade. Subsequently, the environmental impacts of beef tallow biodiesel production were characterized for a selection of environmental impact indicators: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and water footprint (assessed based on blue water use (BWU) and blue water consumption (BWC) indicators). From the characterization of these environmental burdens, the main sources of environmental impact were evaluated. Sensitivity analysis was conducted to verify the influence of key parameters (emission factor, energy consumption, and prices) on changes in the environmental load of beef tallow biodiesel.

Results and discussion

Carbon flux results indicate that beef tallow biodiesel production acts as a carbon source. Namely, pasture carbon uptake (91% of all carbon input) is lower than combined biogenic and fossil CO2 emissions, which are controlled by cattle enteric fermentation as methane (72%) and by thermal energy processes (25%). Otherwise, thermal energy production accounts for 80% of total AP emissions, and cattle urine and manure are responsible for 70% of total EP emissions. The BWC and BWU water footprints of the whole process are controlled by electricity usage, which was greater than 90% for each indicator due to the high proportion of total energy (70%) derived from hydropower in Brazil. The environmental burden from transportation is minimal compared to other processes. Tallow biodiesel GWP can be improved if the carbon uptake potential from grass and low fertilizer utilization are accurately considered, as observed in the sensitivity analysis. For each MJ of beef tallow biodiesel produced, 4.6 g of CO2 is released to the atmosphere.

Conclusions

Methane emissions, mainly due to cattle enteric fermentation, and thermal energy processes at the industrial units were the main sources of environmental GWP, AP, and EP impacts. Otherwise, water footprint indicators were associated with the high proportion of total energy derived from hydropower in Brazil.
  相似文献   

18.

Background, aim, and scope

Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attractive option for one energy application, as transport fuel. Many studies on the LCA of fuel ethanol have been conducted, and the results vary to a large extent. In most of these studies, only one type of allocation is applied. However, the effect of allocation on outcomes is of crucial importance to LCA as a decision supporting tool. This is only addressed in a few studies to a limited extent. Moreover, most of the studies mainly focus on fossil energy use and GHG emissions. In this paper, a case study is presented wherein a more complete set of impact categories is used. Land use has been left out of account as only hectare data would be given which is obviously dominated by agriculture. Moreover, different allocation methods are applied to assess the sensitivity of the outcomes for allocation choices.

Materials and methods

This study focuses on the comparison of LCA results from the application of different allocation methods by presenting an LCA of gasoline and ethanol as fuels and with two types of blends of gasoline with ethanol, all used in a midsize car. As a main second-generation application growing fast in the USA, corn stover-based ethanol is chosen as a case study. The life cycles of the fuels include gasoline production, corn and stover agriculture, cellulosic ethanol production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85% of ethanol), and finally the use of gasoline, E10, E85, and ethanol. In this study, a substantially broader set of eight environmental impacts is covered.

Results

LCA results appear to be largely dependent on the allocation methods rendered. The level of abiotic depletion and ozone layer depletion decrease when replacing gasoline by ethanol fuels, irrespective of the allocation method applied, while the rest of the impacts except global warming potential are larger. The results show a reduction of global warming potential when mass/energy allocation is applied; in the case of economic allocation, it gives contrary results. In the expanded systems, global warming potential is significantly reduced comparing to the ones from the allocated systems. A contribution analysis shows that car driving, electricity use for cellulase enzyme production, and ethanol conversion contribute largely to global warming potential from the life cycle of ethanol fuels.

Discussion

The reason why the results of global warming potential show a reverse trend is that the corn/stover allocation ratio shifts from 7.5 to 1.7 when shifting from economic allocation to mass/energy allocation. When mass/energy allocation is applied, both more credits (CO2 uptake) and more penalties (N2O emission) in agriculture are allocated to stover compared to the case of economic allocation. However, more CO2 is taken up than N2O (in CO2 eq.) emitted. Hence, the smaller the allocation ratio is between corn and stover, the lower the share of the overall global warming emissions being allocated to ethanol will be. In the system expansion approach, global warming potentials are significantly reduced, resulting in the negative values in all cases. This implies that the system expansion results are comparable to one another because they make the same cutoffs but not really to the results related to mass, energy, and economic value-based allocated systems.

Conclusions

The choice of the allocation methods is essential for the outcomes, especially for global warming potential in this case. The application of economic allocation leads to increased GWP when replacing gasoline by ethanol fuels, while reduction of GWP is achieved when mass/energy allocation is used as well as in the system where biogenic CO2 is excluded. Ethanol fuels are better options than gasoline when abiotic depletion and ozone layer depletion are concerned. In terms of other environmental impacts, gasoline is a better option, mainly due to the emissions of nutrients and toxic substances connected with agriculture. A clear shift of problems can be detected: saving fossil fuels at the expense of emissions related to agriculture, with GHG benefits depending on allocation choices. The overall evaluation of these fuel options, therefore, depends very much on the importance attached to each impact category.

Recommendations and perspectives

This study focuses only on corn stover-based ethanol as one case. Further studies may include other types of cellulosic feedstocks (i.e., switchgrass or wood), which require less intensive agricultural practice and may lead to better environmental performance of fuel ethanol. Furthermore, this study shows that widely used but different allocation methods determine outcomes of LCA studies on biofuels. This is an unacceptable situation from a societal point of view and a challenge from a scientific point of view. The results from applying just one allocation method are not sufficient for decision making. Comparison of different allocation methods is certainly of crucial importance. A broader approach beyond LCA for the analysis of biorefinery systems with regard to energy conservation, environmental impact, and cost–benefit will provide general indications on the sustainability of bio-based productions.  相似文献   

19.

Purpose

Residential buildings play an important role in consumption of energy resources. About 40 % of all primary energy is used in buildings all over the world. This paper is the second part of the study on the life-cycle energy (LCEA), emissions (LCCO2A) and cost (LCCA) assessment of two residential buildings constructed in urban and rural areas.

Methods

In the first part, the methodology, formulations and procedure for such a comprehensive analysis are provided, while this paper provides an application of the methodology that considers two actual buildings located in Gaziantep, Turkey. The proposed model focused on building construction, operation and demolition phases to estimate energy use, carbon emissions and costs per square meter over a 50-year lifespan. The optimum thickness of insulation used to reduce energy consumption and emissions per square meter is determined.

Results and discussion

It is found that the operating phase is dominant in both urban and rural residential buildings and contributes 87–85 % of the primary energy requirements and 88–82 % of CO2 emissions, respectively. Life-cycle greenhouse gas emissions were 5.8 and 3.9 tons CO2 eqv. for BT1 and BT2, respectively. It is calculated that the life-cycle energy consumption and CO2 emissions of the residential buildings can be reduced by up to 22.8 and 23.4 %, respectively, by using a proper insulation material for the external walls. The life-cycle cost, consisting of mortgage, energy, maintenance, service and demolition payments are calculated to be 7.28 and 1.72 million USD for BT1 and BT2, respectively.

Conclusions

Building envelope developments, such as better wall insulation, provide noteworthy potential energy savings and contribute to the reductions from cooling and space heating. Therefore, primary strategies and technologies needed for efficient buildings include optimal insulation of external walls. The economic insulation thickness of the residential buildings in Gaziantep is determined to be 80 mm by using a life-cycle cost analysis. The results show that because of the differences in building structures and living standards, life-cycle energy intensity and CO2 emissions in urban residential buildings are 29 and 25 % higher than in rural conditions.
  相似文献   

20.

Purpose

In Korea, natural gas is widely used as city gas, fuel for electricity generation, and fuel for transportation (e.g., city bus). However, the environmental impact associated with the use of natural gas in Korea has not been paid much attention to. In this study, well-to-wheel (WTW) analysis on the greenhouse gas (GHG) emissions and energy uses associated with natural gas in Korea was performed by considering every step from feedstock recovery to final use in the vehicle operation.

Methods

The raw data used in the analysis were mainly provided by Korean natural gas industry and related associations. The additional information, especially for the processes in foreign countries, was also collected by literature survey. We adopted the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model as a base WTW analysis tool, which was developed by the U.S. Argonne National Laboratory. However, the WTW analysis on natural gas in Korea is far different from that of the U.S, because ~99 % of natural gas used in Korea is imported from the oversea countries in the form of liquefied natural gas (LNG). For this reason, detailed parameters in GREET were changed for Korean situation, and especially, significant modifications were made on liquefaction, LNG transportation and storage, and re-gasification processes.

Results and discussion

As a result of the analysis, the well-to-pump GHG emissions of city gas and compressed natural gas are calculated as 25,717–30,178 and 28,903–33,422 g CO2 eq./GJFianl_fuel, respectively. The WTW GHG emission of compressed-natural-gas-fueled city bus is calculated as 1,348–1,417 g CO2 eq./km. These values are relatively larger than those of the U.S., because most of the natural gas used in the U.S. is transported by pipeline in a gaseous state, which typically takes less energy and associated GHG emissions, as compared to the import of LNG in Korea. Finally, sensitivity analysis is performed on the parameters, which have either range of values among various sources or uncertainties due to lack of accurate information.

Conclusions

The results show that further investigation on three parameters, i.e., CO2 venting during natural gas processing, CH4 leakage in Korea, and CH4 leakage during recovery process, would be helpful to further improve overall accuracy of the analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号