首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system.

Methodology/Principal Findings

We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions.

Conclusions/Significance

We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms.  相似文献   

3.
Kishida T 《PloS one》2008,3(6):e2385
The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.  相似文献   

4.

Background  

Olfactory receptor (OR) genes were discovered more than a decade ago, when Buck and Axel observed that, in rats, certain G-protein coupled receptors are expressed exclusively in the olfactory epithelium. Subsequently, protein sequence similarity was used to identify entire OR gene repertoires of a number of mammalian species, but only in mouse were these predictions followed up by expression studies in olfactory epithelium. To rectify this, we have developed a DNA microarray that contains probes for most predicted human OR loci and used that array to examine OR gene expression profiles in olfactory epithelium tissues from three individuals.  相似文献   

5.
Comparison of the canine and human olfactory receptor gene repertoires   总被引:2,自引:1,他引:1  

Background

Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date.

Results

In this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively.

Conclusions

This study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes.
  相似文献   

6.

Background  

Gene expression patterns of olfactory receptors (ORs) are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD) to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB), which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction.  相似文献   

7.
Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed.  相似文献   

8.
The dog and rat olfactory receptor repertoires   总被引:1,自引:0,他引:1       下载免费PDF全文

Background

Dogs and rats have a highly developed capability to detect and identify odorant molecules, even at minute concentrations. Previous analyses have shown that the olfactory receptors (ORs) that specifically bind odorant molecules are encoded by the largest gene family sequenced in mammals so far.

Results

We identified five amino acid patterns characteristic of ORs in the recently sequenced boxer dog and brown Norway rat genomes. Using these patterns, we retrieved 1,094 dog genes and 1,493 rat genes from these shotgun sequences. The retrieved sequences constitute the olfactory receptor repertoires of these two animals. Subsets of 20.3% (for the dog) and 19.5% (for the rat) of these genes were annotated as pseudogenes as they had one or several mutations interrupting their open reading frames. We performed phylogenetic studies and organized these two repertoires into classes, families and subfamilies.

Conclusion

We have established a complete or almost complete list of OR genes in the dog and the rat and have compared the sequences of these genes within and between the two species. Our results provide insight into the evolutionary development of these genes and the local amplifications that have led to the specific amplification of many subfamilies. We have also compared the human and rat ORs with the human and mouse OR repertoires.  相似文献   

9.

Background  

Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome.  相似文献   

10.

Background  

Olfactory receptors (ORs), the largest mammalian gene superfamily (900–1400 genes), has >50% pseudogenes in humans. While most of these inactive genes are identified via coding frame (nonsense) disruptions, seemingly intact genes may also be inactive due to other deleterious (missense) mutations. An ultimate assessment of the actual size of the functional human OR repertoire thus requires an accurate distinction between genes and pseudogenes.  相似文献   

11.
韩宝银  汪凯  焦恒武 《兽类学报》2016,36(4):422-428
翼手目动物(俗称蝙蝠)的食性分化显著,不同食性的蝙蝠具有显著不同的嗅球大小。为了研究嗅觉是否影响了蝙蝠食性的进化,我们利用网上已公布的10种蝙蝠基因组的数据,通过同源比对的方法鉴定出所有的嗅觉受体基因,并进行嗅觉受体基因亚家族的分类,进而比较嗅觉受体基因亚家族的数目差异。结果显示,蝙蝠的嗅觉受体基因与其它哺乳动物一样,都可以分为13个单系起源的亚家族;在Yinpterochiroptera亚目中,OR1/3/7、OR2/13、OR5/8/9等3个嗅觉受体亚家族在食果蝙蝠中均发生了不同程度的扩张,基因数目显著地多于食虫蝙蝠,提示嗅觉在食果蝙蝠取食过程中具有重要的作用。因此,本研究在基因组水平上重现了蝙蝠嗅觉受体基因的进化历史,揭示了3个嗅觉受体基因亚家族的功能可能与食果蝙蝠的食性相关,突出了嗅觉对动物食性的重要作用.  相似文献   

12.

Background  

Research on olfactory G-protein coupled receptors (GPCRs) has been severely impeded by poor functional expression in heterologous systems. Previously, we demonstrated that inefficient olfactory receptor (OR) expression at the plasma membrane is attributable, in part, to degradation of endoplasmic reticulum (ER)-retained ORs by the ubiquitin-proteasome system and sequestration of ORs in ER aggregates that are degraded by autophagy. Thus, experiments were performed to test the hypothesis that attenuation of ER degradation improves OR functional expression in heterologous cells.  相似文献   

13.
Kishida T  Thewissen JG 《Gene》2012,492(2):349-353
Odontocetes and mysticetes are two extant suborders of cetaceans. It is reported that the former have no sense of olfaction, while the latter can smell in air. To explain the ecological reason why mysticetes still retain their sense of smell, two hypotheses have been proposed — the echolocation-priority hypothesis, which assumes that the acquisition of echolocation causes the reduction of the importance of olfaction, and the filter-feeder hypothesis, which assumes that olfactory ability is important for filter-feeders to locate their prey because clouds of plankton give off a peculiar odor. The olfactory marker protein (OMP) is almost exclusively expressed in vertebrate olfactory receptor neurons, and is considered to play important roles in olfactory systems. In this study, full-length open reading frames of OMP genes were identified in 6 cetacean species and we analyzed the nonsynonymous to synonymous substitution rate ratio based on the maximum likelihood method. The evolutionary changes of the selective pressures on OMP genes did fit better to the filter-feeder hypothesis than to the echolocation-priority hypothesis. In addition, no pseudogenization mutations are found in all five odontocetes OMP genes investigated in this study. It may suggest that OMP retains some function even in ‘anosmic’ odontocetes.  相似文献   

14.
Olfactory receptor (OR) genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian). Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates.  相似文献   

15.

Background  

A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system.  相似文献   

16.

Background

To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes.

Results

We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many “edge genes” corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families.

Conclusions

Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-586) contains supplementary material, which is available to authorized users.  相似文献   

17.
Population differences in the human functional olfactory repertoire   总被引:2,自引:0,他引:2  
Olfactory receptors (OR) constitute the molecular basis for the sense of smell. They are encoded by a large multigene family that in humans includes approximately 400 functional genes and approximately 600 putative pseudogenes, distributed on all but two chromosomes. To examine the ethnogeographic variability in the functional chemosensory repertoire, we resequenced 32 OR loci reported to contain a single coding region disruption in seven Caucasians and seven Pygmies. Thirteen of the 32 OR loci were found to have an interrupted coding region in all 28 alleles sampled, seven had an intact form in all the individuals examined, and 12 were polymorphic, segregating both the intact and the null variants. Among the latter loci, the frequency of the null allele was higher in Caucasians than in Pygmies, suggesting that African populations may have a larger repertoire of functional OR genes. Interestingly, when analyzing the entire OR coding regions, we find an excess of high-frequency derived alleles at many loci in the Caucasian sample but less so in the Pygmy sample. Our observations are unlikely to be accounted for by simple demographic models but may be explained by positive selection acting on OR loci in Caucasians.  相似文献   

18.
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.  相似文献   

19.
Recent evidence shows that, despite earlier beliefs, many birds have a functional sense of smell. There is also considerable variation in olfactory-bulb size among bird species, yet the evolutionary significance of this variation has remained elusive. We argue that birds living under low-light conditions, where vision is less efficient, should have evolved or maintained an increased olfactory ability and, hence, larger olfactory bulbs. Using a family-level comparative analysis to control at least partially for taxonomic artifacts, we show that none of a series of ecological variables (diet, nest type, development, nest dispersion, and migratory behavior) accounts for variation in olfactory-bulb size once the effects of body size and brain size (measured by cerebral-hemisphere length) have been controlled. Activity timing, however, accounts for significant variation even after the removal of these other variables. We discovered 13 independent cases in which nocturnal or crepuscular lineages have evolved a diurnal habit, or vice versa, and compared relative olfactory-bulb sizes between each branch pair. In all but one case, nocturnal or crepuscular birds have larger olfactory bulbs than their diurnal counterparts. We therefore demonstrate a widespread relationship between ecology and the evolutionary development of a part of the brain.  相似文献   

20.
The olfactory receptor (OR) genes constitute the largest gene family in mammalian genomes. Humans have >1,000 OR genes, of which only ~40% have an intact coding region and are therefore putatively functional. In contrast, the fraction of intact OR genes in the genomes of the great apes is significantly greater (68%–72%), suggesting that selective pressures on the OR repertoire vary among these species. We have examined the evolutionary forces that shaped the OR gene family in humans and chimpanzees by resequencing 20 OR genes in 16 humans, 16 chimpanzees, and one orangutan. We compared the variation at the OR genes with that at intergenic regions. In both humans and chimpanzees, OR pseudogenes seem to evolve neutrally. In chimpanzees, patterns of variability are consistent with purifying selection acting on intact OR genes, whereas, in humans, there is suggestive evidence for positive selection acting on intact OR genes. These observations are likely due to differences in lifestyle, between humans and great apes, that have led to distinct sensory needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号