首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of amino acid transport in L6 muscle cells by amino acid deprivation was investigated. Proline uptake was Na+-dependent, saturable and concentrative, and was predominantly through system A. Proline uptake was inhibited by alanine, α-amino isobutyric acid (AIB), and by α-methylamino isobutyric acid, but not by lysine or valine. At 25°C, Km of proline uptake was 0.5 mM. Amino acid-deprivation resulted in a progressive increase in the rate of proline uptake, reaching up to 6-fold stimulation after 6 hours. The basal and stimulated transport were equally Na+-dependent, and both were inhibited by competition with the same amino acids. Kinetic analysis showed that Km decreased by a factor of 2.4 and Vmax increased 1.9-fold in deprived cells. Amino acid-deprivation did not stimulate amino acid uptake through systems other than system A. This suggests that the higher Km in proline-supplemented cells is not due to release of intracellular amino acids into unstirred layers surrounding the cells. The presence of amino acids which are substrates of system A (including AIB) during proline-deprivation, prevented stimulation of proline uptake, whereas those transported by systems Ly+ or L exclusively were ineffective. The stimulation of the transport-rate in deprived cells could be reversed by subsequent exposure to proline or other substrates of system A. L6 cells, deprived of proline for 6 hours, retained the stimulation of transport after detachment from the monolayers with trypsin. Uptake rates were comparable in suspended and attached cells in monolayer culture. Thus, amino acid-depreivation of L6 cells results in an adaptive increase in proline uptake, which is not due to unstirred layers but appears to be mediated by other mechanisms of selective transport regulation.  相似文献   

2.
The mechanism of stimulation of amino acid transport system A caused by amino acid deprivation in L6 cells was investigated. In cells loaded with alpha-aminoisobutyric acid (AIB), amino acid deprivation increased the rate of proline uptake only after the intracellular [AIB] dropped below 7 mM. Efflux of proline was not sensitive to the presence of proline in the outer medium (with or without external Na+), suggesting that efflux through system A (and possibly uptake) is not susceptible to transinhibition. Transport (stimulated uptake) into amino acid-deprived cells and that into amino acid-supplemented cells differed in several chemical properties: 1) In the former group, transport was higher at lower pH values than in the latter, and the optimum pH values were 7.5 and 7.8, respectively. 2) Unlike proline uptake in supplemented cells, uptake in deprived cells was inhibited by 50% with N-ethylmaleimide (1 mM) or by 50 microM p-chloromercuribenzoate (PCMBS). Inhibition by PCMBS was not due to collapse of the Na+ gradient. The mercurial inhibited only the deprivation-induced stimulation of transport, bringing the rate of proline uptake to the "basal" uptake level observed in amino acid-supplemented cells. Proline uptake was not stimulated by a second deprivation following treatment with PCMBS and a supplementation-deprivation cycle. However, in untreated cells, or by reversing mercaptide formation with dithiotreitol, the second deprivation stimulated transport. Deprivation at 4 degrees C did not elicit stimulation of proline uptake. Cycloheximide prevented the stimulation and decreased the rate of proline uptake in deprived cells more efficiently than in supplemented cells. Actinomycin D prevented stimulation when added at the onset of deprivation. The above data indicate that stimulation of transport by deprivation is protein synthesis-dependent and that the stimulated transport had chemical properties distinct from the "basal" transport in supplemented cells. The evidence presented is consistent with a model of activation of a finite pool of transporters upon deprivation, the chemical characteristics of which differ from those of the "basal" transport system.  相似文献   

3.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

4.
Livers from nonfasted rats were perfused in situ under conditions known from previous studies in this laboratory to increase or decrease overall endogenous proteolysis. At the termination of the experiments, lysosomal alterations were evaluated by the increase in free acid phosphatase or N-acetyl-β-D-glucosaminidase that occurred when tissue homogenates were subjected to osmotic shock in hypotonic sucrose. In control perfusions, osmotic sensitivity increased spontaneously over unperfused values, reaching maximum by 60 min or earlier. Additions of insulin, amino acid mixtures, or cycloheximide in amounts known to suppress proteolysis prevented this spontaneous perfusion effect or, when added at 60 min, rapidly reversed it. Glucagon alone during perfusion did not increase osmotic sensitivity further; however, stimulation with glucagon was observed when the perfusion effect was suppressed by insulin or cycloheximide. Anoxia, induced by gassing with nitrogen instead of oxygen, markedly reduced the perfusion effect and also doubled the amount of free acid phosphatase in the initial isotonic homogenates. Total acid phosphatase activities in the perfusion experiments were not significantly different from unperfused values and, with the exception of the anoxia perfusions, the amounts of free enzyme present in the initial isotonic sucrose homogenates did not change.  相似文献   

5.
The effect of exposure of chick embryo cells to increasing concentrations of Na+ in the culture medium on the subsequent amino acid transport as determined at physiological osmolarity was investigated in detail. It was found that the hyperosmolar treatment stimulated amino acid transport in a dose-dependent manner up to 200 mM Na+. Changes were measurable as early as 1 h after altering Na+ and reached a maximum after 4 h, remaining constant thereafter. The maintenance of this effect required continuous exposure of the cell to high Na+ in the culture medium. Hyperosmolarity-mediated increases in amino acid transport activity by system A have been detected with l-proline and l-alanine. Transport activities of systems ASC and L did not change appreciably after exposure of the cells to high Na+. Inhibition of protein synthesis by cycloheximide or RNA synthesis by actinomycin D (actD) prevented these uptake changes. Kinetic analysis indicated that the stimulation of the activity of transport system A by high Na+ treatment occurred through a mechanism affecting Vmax rather than Km.  相似文献   

6.
The present report shows that System A-mediated 2-aminoisobutyric acid (AIB) uptake is elevated in hepatocytes isolated from adrenalectomized rats when they are compared to control cells. Although System ASC activity also shows this perturbation, Systems N, beta, L1, and L2 are unaffected. Transport of AIB in both cell types is stimulated by dexamethasone, insulin, and glucagon, yet the hepatocytes from the adrenalectomized rats are much less responsive to these hormones. This apparent decrease in competence is seen for adaptive regulation of System A as well. The in vitro addition of dexamethasone to the hepatocytes from the adrenalectomized animals does not restore fully their ability to respond to hormones or amino acid deprivation. These effects are observed even after the cells have been held in primary culture for 24 hr. The simultaneous addition of glucagon and dexamethasone to either cell type resulted in stimulation of transport to rates significantly greater than the sum of the increases produced by the two hormones when added separately. In contrast, insulin and dexamethasone were additive in their effects rather than synergistic. These results suggest that hepatocytes from adrenalectomized rats are less competent than control cells with respect to regulation of neutral amino acid transport, including stimulation by insulin or amino acid starvation, two processes which appear not to depend on glucocorticoid for maximal response.  相似文献   

7.
The osmotic response of system A for neutral amino acid transport has been related to the adaptive response of this transport system to amino acid starvation. In a previous study (Ruiz-Montasell, B., M. Gómez-Angelats, F.J. Casado, A. Felipe, J.D. McGivan, and M. Pastor-Anglada. 1994. Proc. Natl. Acad. Sci. USA. 91:9569-9573), a model was proposed in which both responses were mediated by different mechanisms. The recent cloning of several isoforms of system A as well as the elucidation of a variety of signal transduction pathways involved in stress responses allow to test this model. SAT2 mRNA levels increased after amino acid deprivation but not after hyperosmotic shock. Inhibition of p38 activity or transfection with a dominant negative p38 did not alter the response to amino acid starvation but partially blocked the hypertonicity response. Inhibition of the ERK pathway resulted in full inhibition of the adaptive response of system A and no increase in SAT2 mRNA levels, without modifying the response to hyperosmolarity. Similar results were obtained after transfection with a dominant negative JNK1. The CDK2 inhibitor peptide-II decreased the osmotic response in a dose-dependent manner but did not have any effect on the adaptive response of system A. In summary, the previously proposed model of up-regulation of system A after hypertonic shock or after amino acid starvation by separate mechanisms is now confirmed and the two signal transduction pathways have been identified. The involvement of a CDK-cyclin complex in the osmotic response of system A links the activity of this transporter to the increase in cell volume previous to the entry in a new cell division cycle.  相似文献   

8.
9.
We have previously reported that insulin and osmotic shock stimulate an increase in glucose transport activity and translocation of the insulin-responsive glucose transporter isoform GLUT4 to the plasma membrane through distinct pathways in 3T3L1 adipocytes (D. Chen, J. S. Elmendorf, A. L. Olson, X. Li, H. S. Earp, and J. E. Pessin, J. Biol. Chem. 272:27401-27410, 1997). In investigations of the relationships between these two signaling pathways, we have now observed that these two stimuli are not additive, and, in fact, osmotic shock pretreatment was found to completely prevent any further insulin stimulation of glucose transport activity and GLUT4 protein translocation. In addition, osmotic shock inhibited the insulin stimulation of lipogenesis and glycogen synthesis. This inhibition of insulin-stimulated downstream signaling occurred without any significant effect on insulin receptor autophosphorylation or tyrosine phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, there was no effect on either the insulin-stimulated association of the p85 type I phosphatidylinositol (PI) 3-kinase regulatory subunit with IRS1 or phosphotyrosine antibody-immunoprecipitated PI 3-kinase activity. In contrast, osmotic shock pretreatment markedly inhibited the insulin stimulation of protein kinase B (PKB) and p70S6 kinase activities. In addition, the dephosphorylation of PKB was prevented by pretreatment with the phosphatase inhibitors okadaic acid and calyculin A. These data support a model in which osmotic shock-induced insulin resistance of downstream biological responses results from an inhibition of insulin-stimulated PKB activation.  相似文献   

10.
Resting lymphocytes are in the G0 phase of the cell cycle. Upon activation by PHA, they progress into G1 with accompanying increased protein and RNA synthesis, initiate DNA synthesis and divide. We have studied the kinetics of inhibition of macromolecular synthesis during activation in the absence of single amino acids. Three types of kinetics are observed. In the absence of tryptophan or isoleucine, stimulated lymphocytes show a normal increase in protein and RNA synthesis during the first 30 hours of stimulation, initiate DNA synthesis but are subsequently inhibited. In phenylalanine-deficient medium, no DNA synthesis occurs in spite of a slight increase in protein synthesis. No increase in macromolecular synthesis is observed in medium lacking any one of the other essential amino acids (eg: lysine). Our results indicate that the kinetics of macromolecular synthesis in tryptophan-deficient medium is the result of a limited reserve of protein-bound tryptophan which becomes exhausted after 30 hours. On the other hand, delayed inhibition of synthesis in isoleucine-deficient medium probably reflects an initially low requirement for this amino acid followed by inhibition of the synthesis of isoleucine-rich proteins involved in some late event of stimulation. Partial deprivation of lysine results in kinetics of protein synthesis similar to that in tryptophan- or isoleucine-deficient media. The results indicate that the kinetics of macromolecular synthesis during activation of lymphocytes in the absence of an essential amino acid is a function of the quantitative requirement for that amino acid, at a given time during stimulation. Upon replacement of lysine, lymphocytes inhibited by lysine deficiency begin RNA and protein synthesis immediately and at a rate faster than that of unstimulated cultures to which PHA is added. They also initiate DNA synthesis earlier and therefore, are closer to the S phase than resting lymphocytes. It is concluded that lymphocytes stimulated in the absence of lysine are activated even though no overall increase in macromolecular synthesis is observed. Furthermore, the kinetics of DNA synthesis following reversal of inhibition by phenylalanine suggests that lymphocytes stimulated during phenylalanine deprivation become arrested at most six hours before S. These results indicate that amino acid deficiencies lead to arrest of activated lymphocytes at various stages of stimulation, depending on how stringent these deficiencies are.  相似文献   

11.
When mamalian cells are starved for amino acids, the activity of the A amino acid transport system increases, a phenomenon called adaptive regulation. We have examined the effects of those factors which support Madin-Darby canine kidney (MDCK) cell growth in a defined medium on the derepression of System A activity. Of the five factors which supported MDCK cell growth, insulin was found to be an absolute requirement for derepression. In contrast, PGE1 was a negative controlling factor for the transport system. Growth of MDCK cells in the absence of PGE1 resulted in elevated System A activity which derepressed poorly upon amino acid starvation. Kinetic analysis of α-(methylamino) isobutyric acid (mAIB) uptake as a function of substrate concentration showed that the elevated A activity observed when cells were grown in the absence of PGE1 was kinetically similar to the activity induced by starvation for amino acids. Transport of mAIB by amino-acid-fed cells grown in the presence of PGE1 was characterized by a linear Eadie-Hofstee graph and by a relatively low Vmax. Transport by cells starved for amino acids or by cells grown in the absence of PGE1 was characterized by biphasic kinetics for mAIB transport and by elevated Vmax values. An influence of growth factors on the inactivation of derepressed A activity was also observed. In the presence of cycloheximide the rate of loss of A activity in amino-acid-starved cells was 1/4–1/2 that of amino-acid-fed cells. Insulin slowed inactivation in the absence of most amino acids in a protein-synthesis-independent manner, but insulin did not influence the more rapid inactivation observed in amino-acid-fed cells. These results indicate that the level of System A activity observed in response to regulation by amino acids represents a balance between carrier synthesis and inactivation, which can be positively or negatively influenced by growth factors.  相似文献   

12.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

13.
14.
The regulation of amino acid transport by insulin has been studied in cultured human fibroblasts. Among the six amino acid transport systems operating in cultured human fibroblasts, two systems (A and X-C) are strongly stimulated by insulin and four (ASC, X-AG, y+ and L) are essentially not sensitive to the presence of the hormone in the incubation medium. The hormonal stimulation of system A and system X-C became significant after 3 h of incubation and increased up to 12 h. The stimulatory effect was related to insulin concentration, with a half-maximal stimulation at 10(-9) M hormone concentration. Insulin enhanced transport activity by increasing the maximal velocity (Vmax) of transport, without significant changes in Km values.  相似文献   

15.
16.
Amino acid uptake by the human placenta is known to occur via several transport mechanisms. However, regulation by extracellular factors has received relatively little attention. A recent report by this laboratory characterized the uptake of α-aminoisobutyric acid (AIB) stimulated by insulin in the cultured human placental trophoblast The current study evaluated the effect of insulin-like growth factor-1 (IGF-1) on AIB uptake in cultured human placental trophoblasts. Na+-dependent AIB uptake was significantly stimulated by IGF-l in a time-dependent manner, as early as 30 min after hormone exposure. The maximum effect was at 2–4 hr of continuous exposure to IGF-l and the stimulation was dependent upon IGF-1 concentration approaching maximal stimulation at 50 ng.ml?1. AIB uptake was inhibited by increasing concentrations of α-(methylamino)isobtyric acid (MeAIB). Approximately 75% of basal (unstimulated) Na+-dependent AIB uptake was inhibited by MeAIB. The IGF-1-stimulated increment above basal AIB uptake was completely inhibited by MeAIB. IGF-1 increased the maximum uptake yelocity but not Km. Using equimolar concentrations, stimulation was greater with IGF-1 then with IGF-2. Stimulation by IGF-1, but not insulin, was inhibited by anit-IGF-1 receptor antibody, indicating mediation via the IGF-1 receptor. H7, a nonspecific inhibitor of serine-threonine kinase, inhibited IGF-1-dependent stimulation of AIB uptake. In addition, calphostin C (a specific inhibitor of protein kinase C), but not H89 (a specific inhibitor of protein kinase A), inhibited the IGF-1 action. This study further characterizes regulated amino acid uptake by the human placental trophoblasts and demonstrates that the Na+-dependent component of AIB uptake is stimulated by physiologic concentrations of IGF-1. © 1995 Wiley-Liss Inc.  相似文献   

17.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

18.
19.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

20.
Enhanced amino acid transport is observed when quiescent cultures of chicken embryo fibroblasts are stimulated to proliferate by the addition of purified multiplication-stimulating activity (MSA). This increase in amino acid transport is an early event occuring prior to the onset of DNA synthesis in stimulated cells. Results indicate that the changes in transport activity, as measured by α-aminoisobutyric acid (AIB) uptake, are due to stimulation of only the Na+-dependent A transport system. There is little or no change in the activities of transport systems ASC, L, or Ly+ upon exposure to MSA. A kinetic analysis shows this increased activity is due to a change in Vmax while Km remains unaltered. Continuous exposure to the stimulus is required to maintain the increased level of transport activity and the presence of inhibitors of RNA and protein synthesis significantly inhibits the response. Results also indicate that a similar specific increase in the A transport system is initiated when RSV tsNY68 infected cells are shifted to the permissive temperature. It appears that the A system of mediation is emerging as a strategic regulatory site for cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号