首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the spectroscopic characteristics of carotenoids associated with the antenna complexes of Photosystem I have been studied. Pigment composition, absorption spectra, and laser-induced triplet-minus-singlet (T-S) spectra were determined for native LHCI from the wild type (WT) and lut2 mutant from Arabidopsis thaliana as well as for reconstituted individual Lhca WT and mutated complexes. All WT complexes bind lutein and violaxanthin, while beta-carotene was found to be associated only with the native LHCI preparation and recombinant Lhca3. In the native complexes, the main lutein absorption bands are located at 492 and 510 nm. It is shown that violaxanthin is able to occupy all lutein binding sites, but its absorption is blue-shifted to 487 and 501 nm. The "red" lutein absorbing at 510 nm was found to be associated with Lhca3 and Lhca4 which also show a second carotenoid, peaking around 490 nm. Both these xanthophylls are involved in triplet quenching and show two T-S maxima: one at 507 nm (corresponding to the 490 nm singlet absorption) and the second at 525 nm (with absorption at 510 nm). The "blue"-absorbing xanthophyll is located in site L1 and can receive triplets from chlorophylls (Chl) 1012, 1011, and possibly 1013. The red-shifted spectral component is assigned to a lutein molecule located in the L2 site. A 510 nm lutein was also observed in the trimers of LHCII but was absent in the monomers. In the case of Lhca, the 510 nm band is present in both the monomeric and dimeric complexes. We suggest that the large red shift observed for this xanthophyll is due to interaction with the neighbor Chl 1015. In the native T-S spectrum, the contribution of carotenoids associated with Lhca2 is visible while the one of Lhca1 is not. This suggests that in the Lhca2-Lhca3 heterodimeric complex energy equilibration is not complete at least on a fast time scale.  相似文献   

2.
EET in reconstituted Lhca4, a peripheral light-harvesting complex from Photosystem I of Arabidopsis thaliana, containing 10 chlorophylls and 2 carotenoids, was studied at room temperature by femtosecond transient absorption spectroscopy. Two spectral forms of Lut were observed in the sites L1 and L2, characterized by significantly different interactions with nearby chlorophyll a molecules. A favorable interpretation of these differences is that the efficiency of EET to Chls is about two times lower from the "blue" Lut in the site L1 than from the "red" Lut in the site L2 due to fast IC in the former case. A major part of the energy absorbed by the "red" Lut, approximately 60%-70%, is transferred to Chls on a sub-100-fs timescale from the state S(2) but, in addition, minor EET from the hot S(1) state within 400-500 fs is also observed. EET from the S(1) state to chlorophylls occurs also within 2-3 ps and is ascribed to Vio and/or "blue" Lut. EET from Chl b to Chl a is biphasic and characterized by time constants of approximately 300 fs and 3.0 ps. These rates are ascribed to EET from Chl b spectral forms absorbing at approximately 644 nm and approximately 650 nm, respectively. About 25% of the excited Chls a decays very fast-within approximately 15 ps. This decay is proposed to be related to the presence of the interacting Chls A5 and B5 located next to the carotenoid in the site L2 and may imply some photoprotective role for Lhca4 in the photosystem I super-complex.  相似文献   

3.
A supercomplex containing the photosystem I (PSI) and chlorophyll a/b light-harvesting complex I (LHCI) has been isolated using a His-tagged mutant of Chlamydomonas reinhardtii. This LHCI-PSI supercomplex contained approximately 215 chlorophyll molecules of which 175 were estimated to be chlorophyll a and 40 to be chlorophyll b, based on P700 oxidation and chlorophyll a/b ratio measurements. Its room temperature long wavelength absorption peak was at 680 nm, and it emitted chlorophyll fluorescence maximally at 715 nm (77 K). The LHCI was composed of four or more different types of Lhca polypeptides including Lhca3. No LHCII proteins or other phosphoproteins were detected in the LHCI-PSI supercomplexes suggesting that the cells from which they were isolated were in State 1. Electron microscopy of negatively stained samples followed by image analysis revealed the LHCI-PSI supercomplex to have maximal dimensions of 220 A by 180 A and to be approximately 105 A thick. An averaged top view was used to model in x-ray and electron crystallographic data for PSI and Lhca proteins respectively. We conclude that the supercomplex consists of a PSI reaction center monomer with 11 Lhca proteins arranged along the side where the PSI proteins, PsaK, PsaJ, PsaF, and PsaG are located. The estimated molecular mass for the complex is 700 kDa including the bound chlorophyll molecules. The assignment of 11 Lhca proteins is consistent with a total chlorophyll level of 215 assuming that the PSI reaction center core binds approximately 100 chlorophylls and that each Lhca subunit binds 10 chlorophylls. There was no evidence for oligomerization of Chlamydomonas PSI in contrast to the trimerization of PSI in cyanobacteria.  相似文献   

4.
A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of all Q(y)() absorption of the chlorophylls arises from two chlorophylls with absorption and emission maxima at about 711 and 733 nm, respectively, whereas in the second about 10% of the absorption arises from two chlorophylls with absorption and emission maxima at about 693 and 702 nm, respectively. The remaining chlorophylls show spectroscopic properties comparable to those of the related peripheral antenna complexes of photosystem II. We attribute the first dimer to a heterodimer of the Lhca1 and Lhca4 proteins and the second to a hetero- or homodimer of the Lhca2 and/or Lhca3 proteins. We suggest that the chlorophylls responsible for the 733 nm emission (F-730) and 702 nm emission (F-702) are excitonically coupled dimers and that F-730 originates from one of the strongest coupled pair of chlorophylls observed in nature.  相似文献   

5.
Chlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species were occupied by the other species resulting in a constant total number of Chls in these complexes. 77-K spectroscopic measurements demonstrated that omission of Chl b in refolded Lhca4 resulted in a loss of long-wavelength absorption and 730-nm fluorescence emission. In Lhcb1 with only Chl b long-wavelength emission was preserved. These results clearly demonstrate the involvement of Chl b in establishing long-wavelength properties.  相似文献   

6.
The peripheral light-harvesting complex of photosystem I contains red chlorophylls (Chls) that, unlike the typical antenna Chls, absorb at lower energy than the primary electron donor P700. It has been shown that the red-most absorption band arises from two excitonically coupled Chls, although this interaction alone cannot explain the extreme red-shifted emission (25 nm, ∼480 cm−1 for Lhca4 at 4 K) that the red Chls present. Here, we report the electric field-induced absorption changes (Stark effect) on the Qy region of the Lhca4 complex. Two spectral forms, centered around 690 nm and 710 nm, were necessary to describe the absorption and Stark spectra. The analysis of the lowest energy transition yields a high value for the change in dipole moment, Δμ710nm ≈ 8 Df−1, between the ground and excited states as compared with monomeric, Δμ = 1 D, or dimeric, Δμ = 5 D, Chl a in solution. The high value of the Δμ demonstrates that the origin of the red-shifted emission is the mixing of the lowest exciton state with a charge-transfer state of the dimer. This energetic configuration, an excited state with charge-transfer character, is very favorable for the trapping and dissipation of excitations and could be involved in the photoprotective mechanism(s) of the photosystem I complex.  相似文献   

7.
We report on the results obtained by measuring the stoichiometry of antenna polypeptides in Photosystem I (PSI) from Arabidopsis thaliana. This analysis was performed by quantification of Coomassie blue binding to individual LHCI polypeptides, fractionation by SDS/PAGE, and by the use of recombinant light harvesting complex of Photosystem I (Lhca) holoproteins as a standard reference. Our results show that a single copy of each Lhca1-4 polypeptide is present in Photosystem I. This is in agreement with the recent structural data on PSI-LHCI complex [Ben Shem, A., Frolow, F. and Nelson, N. (2003) Nature, 426, 630-635]. The discrepancy from earlier estimations based on pigment binding and yielding two copies of each LHCI polypeptide per PSI, is explained by the presence of 'gap' and 'linker' chlorophylls bound at the interface between PSI core and LHCI. We showed that these chlorophylls are lost when LHCI is detached from the PSI core moiety by detergent treatment and that gap and linker chlorophylls are both Chl a and Chl b. Carotenoid molecules are also found at this interface between LHCI and PSI core. Similar experiments, performed on PSII supercomplexes, showed that dissociation into individual pigment-proteins did not produce a significant loss of pigments, suggesting that gap and linker chlorophylls are a peculiar feature of Photosystem I.  相似文献   

8.
9.
Time-resolved fluorescence measurements were performed on isolated core and intact Photosystem I (PS I) particles and stroma membranes from Arabidopsis thaliana to characterize the type of energy-trapping kinetics in higher plant PS I. Target analysis confirms the previously proposed “charge recombination” model. No bottleneck in the energy flow from the bulk antenna compartments to the reaction center has been found. For both particles a trap-limited kinetics is realized, with an apparent charge separation lifetime of ∼6 ps. No red chlorophylls (Chls) are found in the PS I-core complex from A. thaliana. Rather, the observed red-shifted fluorescence (700-710 nm range) originates from the reaction center. In contrast, two red Chl compartments, located in the peripheral light-harvesting complexes, are resolved in the intact PS I particles (decay lifetimes 33 and 95 ps, respectively). These two red states have been attributed to the two red states found in Lhca 3 and Lhca 4, respectively. The influence of the red Chls on the slowing of the overall trapping kinetics in the intact PS I complex is estimated to be approximately four times larger than the effect of the bulk antenna enlargement.  相似文献   

10.
Lucinski R  Schmid VH  Jansson S  Klimmek F 《FEBS letters》2006,580(27):6485-6488
In the outer antenna (LHCI) of higher plant photosystem I (PSI) four abundantly expressed light-harvesting protein of photosystem I (Lhca)-type proteins are organized in two heterodimeric domains (Lhca1/Lhca4 and Lhca2/Lhca3). Our cross-linking studies on PSI-LHCI preparations from wildtype Arabidopsis and pea plants indicate an exclusive interaction of the rarely expressed Lhca5 light-harvesting protein with LHCI in the Lhca2/Lhca3-site. In PSI particles with an altered LHCI composition Lhca5 assembles in the Lhca1/Lhca4 site, partly as a homodimer. This flexibility indicates a binding-competitive model for the LHCI assembly in plants regulated by molecular interactions of the Lhca proteins with the PSI core.  相似文献   

11.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

12.
The basal position of the Mamiellales (Prasinophyceae) within the green lineage makes these unicellular organisms key to elucidating early stages in the evolution of chlorophyll a/b-binding light-harvesting complexes (LHCs). Here, we unveil the complete and unexpected diversity of Lhc proteins in Ostreococcus tauri, a member of the Mamiellales order, based on results from complete genome sequencing. Like Mantoniella squamata, O. tauri possesses a number of genes encoding an unusual prasinophyte-specific Lhc protein type herein designated "Lhcp". Biochemical characterization of the complexes revealed that these polypeptides, which bind chlorophylls a, b, and a chlorophyll c-like pigment (Mg-2,4-divinyl-phaeoporphyrin a5 monomethyl ester) as well as a number of unusual carotenoids, are likely predominant. They are retrieved to some extent in both reaction center I (RCI)- and RCII-enriched fractions, suggesting a possible association to both photosystems. However, in sharp contrast to previous reports on LHCs of M. squamata, O. tauri also possesses other LHC subpopulations, including LHCI proteins (encoded by five distinct Lhca genes) and the minor LHCII polypeptides, CP26 and CP29. Using an antibody against plant Lhca2, we unambiguously show that LHCI proteins are present not only in O. tauri, in which they are likely associated to RCI, but also in other Mamiellales, including M. squamata. With the exception of Lhcp genes, all the identified Lhc genes are present in single copy only. Overall, the discovery of LHCI proteins in these prasinophytes, combined with the lack of the major LHCII polypeptides found in higher plants or other green algae, supports the hypothesis that the latter proteins appeared subsequent to LHCI proteins. The major LHC of prasinophytes might have arisen prior to the LHCII of other chlorophyll a/b-containing organisms, possibly by divergence of a LHCI gene precursor. However, the discovery in O. tauri of CP26-like proteins, phylogenetically placed at the base of the major LHCII protein clades, yields new insight to the origin of these antenna proteins, which have evolved separately in higher plants and green algae. Its diverse but numerically limited suite of Lhc genes renders O. tauri an exceptional model system for future research on the evolution and function of LHC components.  相似文献   

13.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while beta-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

14.
Leaves and chloroplast suspensions of severely and slightly iron deficient cucumber ( Cucumis sativus L.) plants were characterized by low-temperature fluorescence emission spectroscopy and Deriphat polyacrylamide gel electrophoresis. The emission spectra of the chloroplast suspensions were resolved into Gaussian components and those changes induced by iron deficiency were related to the variations in the chlorophyll-protein pattern. The symptoms described with these methods were also correlated with the iron content of the leaves. It was concluded that the lack of physiologically active iron caused a relative decrease of photosystem I (PSI) and light harvesting complex I (LHCI), together with the long wavelength fluorescence, especially the 740 nm Gaussian component, and. to a much lesser extent, of the photosystem II (PSII) core complexes (relative increase of 685, 695 nm components). However, the relative decrease in the amount of light harvesting complex II (LHCII) was followed by a relative increase in its fluorescence band at 680 nm, showing that energy transfer from LHCII to core complex II (CCII) was partly disturbed. Thus iron deficiency affected the photosynthetic apparatus in a complex way: it decreased the synthesis of chlorophylls (Chls) and influenced the expression and assembly of Chl-binding proteins.  相似文献   

15.
Photosystem I of higher plants is characterized by a typically long wavelength fluorescence emission associated to its light-harvesting complex I moiety. The origin of these low energy chlorophyll spectral forms was investigated by using site-directed mutagenesis of Lhca1-4 genes and in vitro reconstitution into recombinant pigment-protein complexes. We showed that the red-shifted absorption originates from chlorophyll-chlorophyll (Chl) excitonic interactions involving Chl A5 in each of the four Lhca antenna complexes. An essential requirement for the presence of the red-shifted absorption/fluorescence spectral forms was the presence of asparagine as a ligand for the Chl a chromophore in the binding site A5 of Lhca complexes. In Lhca3 and Lhca4, which exhibit the most red-shifted red forms, its substitution by histidine maintains the pigment binding and, yet, the red spectral forms are abolished. Conversely, in Lhca1, having very low amplitude of red forms, the substitution of Asn for His produces a red shift of the fluorescence emission, thus confirming that the nature of the Chl A5 ligand determines the correct organization of chromophores leading to the excitonic interaction responsible for the red-most forms. The red-shifted fluorescence emission at 730 nm is here proposed to originate from an absorption band at approximately 700 nm, which represents the low energy contribution of an excitonic interaction having the high energy band at 683 nm. Because the mutation does not affect Chl A5 orientation, we suggest that coordination by Asn of Chl A5 holds it at the correct distance with Chl B5.  相似文献   

16.
Photosystem I (PS-I) contains a small fraction of chlorophylls (Chls) that absorb at wavelengths longer than the primary electron donor P700. The total number of these long wavelength Chls and their spectral distribution are strongly species dependent. In this contribution we present room temperature time-resolved fluorescence data of five PS-I core complexes that contain different amounts of these long wavelength Chls, i.e., monomeric and trimeric photosystem I particles of the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus, and Spirulina platensis, which were obtained using a synchroscan streak camera. Global analysis of the data reveals considerable differences between the equilibration components (3.4-15 ps) and trapping components (23-50 ps) of the various PS-I complexes. We show that a relatively simple compartmental model can be used to reproduce all of the observed kinetics and demonstrate that the large kinetic differences are purely the result of differences in the long wavelength Chl content. This procedure not only offers rate constants of energy transfer between and of trapping from the compartments, but also well-defined room temperature emission spectra of the individual Chl pools. A pool of red shifted Chls absorbing around 702 nm and emitting around 712 nm was found to be a common feature of all studied PS-I particles. These red shifted Chls were found to be located neither very close to P700 nor very remote from P700. In Synechococcus trimeric and Spirulina monomeric PS-I cores, a second pool of red Chls was present which absorbs around 708 nm, and emits around 721 nm. In Spirulina trimeric PS-I cores an even more red shifted second pool of red Chls was found, absorbing around 715 nm and emitting at 730 nm.  相似文献   

17.
Energy transfer processes in the chlorophyll antenna of the PS I–LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640–670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow ∼ ∼100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547–10555) is not observed in the excitation dynamics of the PS I–LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I–LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two ΔA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I–LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I–LHCI. It is proposed that the uncoupling of pigment pools may be a control mechanism that regulates energy flow in Photosystem I.  相似文献   

18.
The Lhca antenna complexes of photosystem I (PSI) have been characterized by comparison of native and recombinant preparations. Eight Lhca polypeptides have been found to be all organized as dimers in the PSI-LHCI complex. The red emission fluorescence is associated not only with Lhca1-4 heterodimer, but also with dimers containing Lhca2 and/or Lhca3 complexes. Reconstitution of Lhca1 and Lhca4 monomers as well as of the Lhca1-4 dimer in vitro was obtained. The biochemical and spectroscopic features of these three complexes are reported. The monomers Lhca1 and Lhca4 bind 10 Chls each, while the Chl a/b ratio is lower in Lhca4 as compared to Lhca1. Three carotenoid binding sites have been found in Lhca1, while only two are present in Lhca4. Both complexes contain lutein and violaxanthin while β-carotene is selectively bound to the Lhca1-4 dimer in substoichiometric amounts upon dimerization. Spectral analysis revealed the presence of low energy absorption forms in Lhca1 previously thought to be exclusively associated with Lhca4. It is shown that the process of dimerization changes the spectroscopic properties of some chromophores and increases the amplitude of the red absorption tail of the complexes. The origin of these spectroscopic features is discussed.  相似文献   

19.
Energy transfer processes in the chlorophyll antenna of the PS I-LHCI supercomplexes from the green alga Chlamydomonas reinhardtii have been studied at 77 K using transient absorption spectroscopy with multicolor excitation in the 640-670 nm region. Comparison of the kinetic data obtained at low and room temperatures indicates that the slow approximately approximately 100 ps excitation equilibration phase that is characteristic of energy coupling of the LHCI peripheral antenna to the PS I core at physiological temperatures (Melkozernov AN, Kargul J, Lin S, Barber J and Blankenship RE (2004) J Phys Chem B 108: 10547-10555) is not observed in the excitation dynamics of the PS I-LHCI supercomplex at 77 K. This suggests that at low temperatures the peripheral antenna is energetically uncoupled from the PS I core antenna. Under these conditions the observed kinetic phases on the time scales from subpicoseconds to tens of picoseconds represent the superposition of the processes occurring independently in the PS I core antenna and the Chl a/b containing LHCI antenna. In the PS I-LHCI supercomplex with two uncoupled antennas the excitation is channeled to the excitation sinks formed at low temperature by clusters of red pigments. A better spectral resolution of the transient absorption spectra at 77 K results in detection of two DeltaA bands originating from the rise of photobleaching on the picosecond time scale of two clearly distinguished pools of low energy absorbing Chls in the PS I-LHCI supercomplex. The first pool of low energy pigments absorbing at 687 nm is likely to originate from the red pigments in the LHCI where the Lhca1 protein is most abundant. The second pool at 697 nm is suggested to result either from the structural interaction of the LHCI and the PS I core or from other Lhca proteins in the antenna. The kinetic data are discussed based on recent structural models of the PS I-LHCI. It is proposed that the uncoupling of pigment pools may be a control mechanism that regulates energy flow in Photosystem I.  相似文献   

20.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号