首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Using pSC101, RSF1010, RSF2124 and RP4 plasmids as vectors and bacteriophage lambdatrpD-A60-3 DNA as a source of the Escherichia coli whole tryptophan operon, composite plasmids of pSC101-trp, RSF1010-trp, RSF2124-trp and RP4-trp were constructed in vitro with EcoRI restriction endonuclease and DNA ligase. Each composite plasmid could be maintained stably in E. coli cells. The copy number of pSC101-trp, RSF1010-trp, RSF2124-trp and RP4-trp were 4.2, 11.2, 11.9 and 1.6 per chromosome respectively. The tryptophan synthetase activities in cells containing pSC101-trp, RSF1010-trp, RSF2124-trp aand RP4-trp plasmid were found to be 2.1, 6.0, 5.0 and 2.5 times compared with the level in chromosomal trp+ cells when they were grown in a minimal medium. By partial derepression with indolylacrylic acid, the enzyme levels were elevated to 10.1, 16.3, 15.3, 12.3 times, respectively, that of the control cells. The tryptophan synthetase activities did not increase in proportion to the copy number of the plasmids, but were strongly affected by the repression system of host cells.  相似文献   

2.
We investigated the structural, functional, and regulatory properties of the Shigella dysenteriae tryptophan (trp.) operon in transduction hybrids in which the cysB-trp-region of Escherichia coli is replaced by the corresponding region from S. dysenteriae. Tryptophan biosynthesis was largely blocked in the hybrids, although the order of the structural genes was identical with that of E. coli. Nutritional tests and enzyme assays revealed that the hybrids produced a defective anthranilate synthetase (ASase). Deletion mapping identified two distinct sites in trpE, each of which was partially responsible for the instability and low activity of ASase. We also discovered a pleiotropic site trpP (S) that maps outside the structural gene region and is closely linked to the S. dysenteriae trp operator. trpP (S) reduced the rate of trp messenger ribonucleic acid synthesis, and consequently trp enzyme levels, 10-fold relative to wild-type E. coli. In recombinants in which the structural genes of E coli were under the control of the S. dysenteriae promoter, enzyme levels were also reduced 10-fold. In some fast-growing revertants of the original hybrids, the rates of trp messenger ribonucleic acid synthesis and levels of tryptophan synthetase were restored to values characteristic of wild-type E.coli. Thus, the Trp auxotrophy associated with the S dysenteriae trp operon derives from the combination of a defective ASase and decreased expression of the entire operon imposed by trpP (S).  相似文献   

3.
One of the transconjugants (1-7) obtained by the authors earlier in the conjugation of Escherichia coli J-62 with Pseudomonas aeruginosa 1822, besides the plasmic RP1 has acquired the ability to grow without proline and tryptophan. The detailed analysis has shown that in the conjugation of the transconjugant 1-7 with different strains of E. coli the plasmic RP1 and chromosomal genes were transmitted together, but in transduction--by means of bacteriophage P1, independently of each other. The fertility was found only in the transductants carrying the plasmid RP1. This suggests that in the intergeneric conjugations the transmission of chromosomal genes may occur without any firm link with the plasmid (as in the case of "aggregated plasmids"). In E. coli cells these chromosomal fragments of Ps. aeruginosa apparently formed small nontransmissible replicons.  相似文献   

4.
EcoRI endonuclease digestion of the deoxyribonucleic acid of a phi80 transducing phage carrying the entire tryptophan (trp) operon of Salmonella typhimurium (phi80 S.t.trpE-A) yielded a 4.3 X 10(6)-dalton fragment containing intact trpE, trpD, and trpC and a 3.35 X 10(6)-dalton fragment containing intact trpA. The trpA fragment inserted into EcoRI-cleaved plasmids ColE1 and CR1 was expressed regardless of its orientation of insertion. Mitomycin C, a compound that induces colicin E1 production in ColE1-containing bacteria, stimulated tryptophan synthetase alpha production in cells containing ColE1-TRPA plasmids with the trpA fragment inserted in one orientation but not the other. We conclude that in the inducible plasmids trpA can be expressed from the colicin E1 promoter.  相似文献   

5.
A trpE mutant of Serratia marcescens (E-7) was isolated, and the multimeric enzyme tryptophan synthetase (EC 4.2.1.20) was purified to homogeneity from derepressed cells. The A and B subunits were resolved, and the B subunit was partially characterized and compared with the Escherichia coli B subunit as part of a comparative evolution study of the trpB cistron of the trp operon in the Enterobacteriaceae. The S. marcescens B subunit is a dimer (beta(2)), and its molecular weight was estimated to be 89,000. The separate subunits (beta monomers) had molecular weights of approximately 43,000. The B subunit required pyridoxal phosphate for catalytic activity and had an apparent K(m) of 9 x 10(-6) M. The N terminus of the B subunit was unavailable for reaction with terminal amine reagents (blocked), whereas carboxypeptidase digestion released a C-terminal isoleucine. Using S. marcescens B antiserum in agar immunodiffusion gave an almost complete reaction of identity between the B subunits of S. marcescens and E. coli. The antiserum was used in microcomplement fixation, allowing for a comparison of the overall antigenic surface structure of the two B subunits. The index of dissimilarity for the heterologous E. coli enzyme compared with the homologous S. marcescens enzyme was 2.4, indicating extensive similarity of the two proteins at their surfaces. Comparative antiserum neutralization of B-subunit enzyme activity showed the E. coli enzyme to cross-react 85% as well as the S. marcescens enzyme. With regard to the biochemical and immunochemical parameters used in this study, the S. marcescens and E. coli B subunits were either identical or very similar. These findings support the idea that the trpB cistron of the trp operon is a relatively conserved gene in the Enterobacteriaceae.  相似文献   

6.
7.
An investigation of repression in the trp system of Escherichia coli was undertaken using operon fusions and plasmids constructed via recombinant DNA technology. The promoters of the trp operon and the trpR gene were fused to lacZ, enabling the activity of these promoters to be evaluated under various conditions through measurements of beta-galactosidase production. In confirmation of earlier studies, the trpR gene was shown to be regulated autogenously. This control feature of the trp system was found to maintain intracellular Trp repressor protein at essentially invariant levels under most conditions studied. Increasing the trpR+ gene dosage did not significantly elevate Trp repressor protein levels, nor did the introduction of additional operator "sinks" result in significantly decreased levels of Trp repressor protein. Definite alterations in intracellular Trp repressor protein levels were achieved only by subverting the normal trpR regulatory elements. The placement of the lacUV5 or the lambda PL promoters upstream of the trpR gene resulted in significant increases in repression of the trp system. Substituting the primary trp promoter/operator for the native trpR promoter/operator resulted in an altered regulatory response of the trp system to tryptophan limitation or excess. The regulation of the trpR gene effectively imparts a broad range of expression to the trp operon in a manner finely attuned to fluctuations in intracellular tryptophan levels.  相似文献   

8.
The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) beta subunit. Analogs characterized by modification or removal of the alpha-amino group or the alpha-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression.  相似文献   

9.
10.
酵母菌色氨酸合成酶基因的克隆与表达   总被引:2,自引:0,他引:2  
用RemHI酶切酿酒酵母(Saceharomyces cercuisiae) 1412-4D染色体DNA,通过蔗糖梯度分离2-4kb DNA片段并插入穿棱质粒pCN60,构成1412-4D基因文库。从基因文库中提取重组质粒,转化受体菌C9(a,trp5,adcl,ade6),用直接功能互补法,分离到9株重组质粒,它们都含有3.2kb的TRP5 DNA片段,分别命名为pCN60(trps)1-90转化体中色氨酸合成酶的酶活水平比原始菌株1412-4D高3倍。  相似文献   

11.
12.
13.
During evolution of fungi, the separate tryptophan synthetase alpha and beta polypeptides of bacteria appear to have been fused in the order alpha-beta rather than the beta-alpha order that would be predicted from the order of the corresponding structural genes in all bacteria. We have fused the tryptophan synthetase polypeptides of Escherichia coli in both orders, alpha-beta and beta-alpha, with and without a short connecting (con) sequence, to explore possible explanations for the domain arrangement in fungi. We find that proteins composed of any of the four fused polypeptides, beta-alpha, beta-con-alpha, alpha-beta, and alpha-con-beta, are highly active enzymatically. However, only the alpha-beta and alpha-con-beta proteins are as active as the wild type enzyme. All four fusion proteins appear to be less soluble in vivo than the wild type enzyme; this abnormal characteristic is minimal for the alpha-con-beta enzyme. The alpha and beta domains of the four fusion polypeptides were not appreciably more heat labile than the wild type polypeptides. Competition experiments with mutant tryptophan synthetase alpha protein, and the fusion proteins suggest that in each fusion protein the joined alpha and beta domains have a functional tunnel connecting their alpha and beta active sites. Three tryptophan synthetase beta'-alpha fusion proteins were examined in which the carboxyl-terminal segment of the wild type beta polypeptide was deleted and replaced by a shorter, unnatural sequence. The resulting deletion fusion proteins were enzymatically inactive and were found predominantly in the cell debris. Evaluation of our findings in relation to the three-dimensional structure of the tryptophan synthetase enzyme complex of Salmonella typhimurium (5) and the results of mutational analyses with E. coli suggest that tryptophan synthetase may have evolved via an alpha-beta rather than a beta-alpha fusion because in beta-alpha fusions the amino-terminal helix of the alpha chain cannot assume the conformation required for optimal enzymatic activity.  相似文献   

14.
D M Gol'dfarb  E I Popov 《Genetika》1979,15(11):1963-1970
Interaction of conjugative plasmids F'colV colB trp and PR4 in Escherichia coli host was studied during the transfer of the plasmids from cell to cell. The plasmid F'colV colB trp is found to stimulate the transfer of RP4 from the diplasmid strain. This seems to be due to stabilization of the conjugating pairs which require normal pili coded by the plasmid F'colV colB trp.  相似文献   

15.
For the purpose of studying the production of L-tryptophan by Escherichia coli, the deletion mutants of the trp operon (trpAE1) were transformed with mutant plasmids carrying the trp operon whose anthranilate synthase and phosphoribosyl anthranilate transferase (anthranilate aggregate), respectively, had been desensitized to tryptophan inhibition. In addition to release of the anthranilate aggregate from the feedback inhibition required for plasmids such as pSC101 trp.I15, the properties of trp repression (trpR) and tryptophanase deficiency (tnaA) were both indispensable for host strains such as strain Tna (trpAE1 trpR tnaA). The gene dosage effects on tryptophan synthase activities and on production of tryptophan were assessed. A moderate plasmid copy number, approximately five per chromosome, was optimal for tryptophan production. Similarly, an appropriate release of the anthranilate aggregate from feedback inhibition was also a necessary step to ward off the metabolic anomaly. If the mutant plasmid pSC101 trp-I15 was further mutagenized (pSC101 trp.I15.14) and then transferred to Tna cells, an effective enhancement of tryptophan production was achieved. Although further improvement of the host-plasmid system is needed before commercial production of tryptophan can be realized by this means, a promising step toward this goal has been established.  相似文献   

16.
17.
18.
Suppressor mutations were identified in Pseudomonas aeruginosa, and a comparison was made with Escherichia coli suppressor systems. A suppressor-sensitive (sus) derivative of a plasmid, RP4 trp, and several Sus mutants of IncP1 plasmid-specific phages, were isolated by using E. coli. Plasmid RP4 trp (sus) was transferred to P. aeruginosa strains carrying trp markers which did not complement RP4 trp(sus), and Trp+ variants were selected. Some, but not all such revertants, could propagate PRD1 Sus phages, and these mutants were found to be supressor positive. Plating efficiencies of various Sus phages on these strains were compared with on E. coli strains carrying known suppressor genes. The results suggested that the Pseudomonas suppressors were probably amber suppressors. In iddition, some Sus phages (PRD1sus-55, PRD1sus-56) were obtained which, although apparently of the amber type for E. coli, were able to propagate equally well on sup+ or sup strains of P. aeruginosa. On the other hand, several mutants of phage PRR1 which were suppressed in E. coli were not suppressed by the P. aeruginosa suppressor. Suppressor-sensitive mutants were also isolated with P. aeruginosa bacteriophages E79 and D3.  相似文献   

19.
Five trp genes, trpD, trpC, trpF, trpB, and trpA, of Lactobacillus casei were cloned by transformation of tryptophan auxotrophic mutants of the respective trp genes in Escherichia coli. These trp genes appear to constitute an operon and are located in the above order in a segment of DNA of 6,468 base pairs. The entire nucleotide sequence of this DNA segment was determined. Five contiguous open reading frames in this segment can encode proteins consisting of 341, 260, 199, 406, and 266 amino acids, respectively, in the same direction. The amino acid sequences of these proteins exhibit 25.5-50.2% homology with the amino acid sequences of the corresponding trp enzymes of E. coli. Two trp genes, trpC and trpF, from L. casei can complement mutant alleles of the corresponding genes of E. coli. However, neither the trpA gene nor the trpB gene of L. casei can complement mutations in the E. coli trpA gene and the trpB gene, respectively, suggesting that the protein products of the L. casei and E. coli trpA and trpB genes, respectively, cannot form heterodimers of tryptophan synthetase with activity. Other features of the coding and flanking regions of the trp genes are also described.  相似文献   

20.
Tobacco (cv. Xanthi and cv. Wisconsin 38), rice, carrot, tomato, and soybean tissue cultures were grown in liquid media containing L-tryptophan. The addition of tryptophan increased the cellular tryptophan levels greatly (12–2500 fold), but did not lower appreciably the levels of two tryptophan biosynthetic enzymes, anthranilate synthetase and tryptophan synthetase. However, the addition of 50 μM tryptophan to the crude enzyme extract completely inhibited the anthranilate synthetase activity while 1 mM tryptophan inhibited the tryptophan synthetase activity by only 10–20°/o. This information indicates that tryptophan biosynthesis is controlled by the feedback inhibition of anthranilate synthetase by tryptophan and not by repression of enzyme synthesis. All of the species had significant enzyme levels. Anthranilate synthetase activity could not be detected in extracts from cells grown on tryptophan unless the extracts were first passed through two G-25 Sephadex columns with a short 30 °C warming step in between, a procedure shown to remove an inhibitor of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号